- **3.** Find the area under the curve $y = 1/x^3$ from x = 1 to x = t and evaluate it for t = 10, 100, and 1000. Then find the total area under this curve for $x \ge 1$.
- **4.** (a) Graph the functions $f(x) = 1/x^{1.1}$ and $g(x) = 1/x^{0.9}$ in the viewing rectangles [0, 10] by [0, 1] and [0, 100] by [0, 1].
 - (b) Find the areas under the graphs of f and g from x = 1 to x = t and evaluate for $t = 10, 100, 10^4, 10^6, 10^{10}$, and 10^{20} .
 - (c) Find the total area under each curve for $x \ge 1$, if it exists.

5–40 IIII Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

$$5. \int_{1}^{\infty} \frac{1}{(3x+1)^2} \, dx$$

6.
$$\int_{-\infty}^{0} \frac{1}{2x - 5} \, dx$$

7.
$$\int_{-\infty}^{-1} \frac{1}{\sqrt{2-w}} dw$$

8.
$$\int_0^\infty \frac{x}{(x^2 + 2)^2} \, dx$$

9.
$$\int_4^\infty e^{-y/2} \, dy$$

10.
$$\int_{-\infty}^{-1} e^{-2t} dt$$

$$11. \int_{-\infty}^{\infty} \frac{x}{1+x^2} \, dx$$

12.
$$\int_{-\infty}^{\infty} (2 - v^4) dv$$

13.
$$\int_{-\infty}^{\infty} x e^{-x^2} dx$$

14.
$$\int_{-\infty}^{\infty} x^2 e^{-x^3} dx$$

$$15. \int_{2\pi}^{\infty} \sin\theta \, d\theta$$

16.
$$\int_0^\infty \cos^2 \alpha \, d\alpha$$

17.
$$\int_{1}^{\infty} \frac{x+1}{x^2+2x} dx$$

18.
$$\int_0^\infty \frac{dz}{z^2 + 3z + 2}$$

$$19. \int_0^\infty se^{-5s} \, ds$$

20.
$$\int_{-\infty}^{6} re^{r/3} dr$$

$$21. \int_1^\infty \frac{\ln x}{x} \, dx$$

$$22. \int_{-\infty}^{\infty} e^{-|x|} dx$$

23.
$$\int_{-\infty}^{\infty} \frac{x^2}{9 + x^6} \, dx$$

$$24. \int_1^\infty \frac{\ln x}{x^3} \, dx$$

$$25. \int_1^\infty \frac{\ln x}{x^2} \, dx$$

26.
$$\int_0^\infty \frac{x \arctan x}{(1+x^2)^2} \, dx$$

27.
$$\int_0^3 \frac{1}{\sqrt{x}} \, dx$$

28.
$$\int_0^3 \frac{1}{x\sqrt{x}} \, dx$$

29.
$$\int_{-1}^{0} \frac{1}{x^2} dx$$

30.
$$\int_{1}^{9} \frac{1}{\sqrt[3]{x-9}} \, dx$$

31.
$$\int_{-2}^{3} \frac{1}{x^4} dx$$

32.
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

33.
$$\int_0^{33} (x-1)^{-1/5} dx$$

34.
$$\int_0^1 \frac{1}{4y-1} dy$$

$$35. \int_0^{\pi} \sec x \, dx$$

$$36. \int_0^4 \frac{1}{x^2 + x - 6} \, dx$$

37.
$$\int_{-1}^{1} \frac{e^{x}}{e^{x} - 1} dx$$

38.
$$\int_0^2 \frac{x-3}{2x-3} \, dx$$

39.
$$\int_{0}^{2} z^{2} \ln z \, dz$$

$$\mathbf{40.} \ \int_0^1 \frac{\ln x}{\sqrt{x}} \, dx$$

41-46 IIII Sketch the region and find its area (if the area is finite)

41.
$$S = \{(x, y) \mid x \le 1, \ 0 \le y \le e^x\}$$

42.
$$S = \{(x, y) \mid x \ge -2, \ 0 \le y \le e^{-x/2} \}$$

43.
$$S = \{(x, y) \mid 0 \le y \le 2/(x^2 + 9)\}$$

44.
$$S = \{(x, y) \mid x \ge 0, \ 0 \le y \le x/(x^2 + 9)\}$$

45.
$$S = \{(x, y) \mid 0 \le x < \pi/2, \ 0 \le y \le \sec^2 x\}$$

46.
$$S = \{(x, y) \mid -2 < x \le 0, \ 0 \le y \le 1/\sqrt{x+2} \}$$

47. (a) If $g(x) = (\sin^2 x)/x^2$, use your calculator or computer t make a table of approximate values of $\int_1^t g(x) dx$ for t 5, 10, 100, 1000, and 10,000. Does it appear that $\int_1^\infty g(x) dx$ is convergent?

(b) Use the Comparison Theorem with $f(x) = 1/x^2$ to sh that $\int_1^\infty g(x) dx$ is convergent.

- (c) Illustrate part (b) by graphing f and g on the same so for $1 \le x \le 10$. Use your graph to explain intuitively $\int_{1}^{\infty} g(x) dx$ is convergent.
- **48.** (a) If $g(x) = 1/(\sqrt{x} 1)$, use your calculator or comput make a table of approximate values of $\int_2^x g(x) dx$ for 10, 100, 1000, and 10,000. Does it appear that $\int_2^\infty g(x) dx$ convergent or divergent?

(b) Use the Comparison Theorem with $f(x) = 1/\sqrt{x}$ to

that $\int_{2}^{\infty} g(x) dx$ is divergent.

(c) Illustrate part (b) by graphing f and g on the same s for $2 \le x \le 20$. Use your graph to explain intuitive $\int_{2}^{\infty} g(x) dx$ is divergent.

49–54 IIII Use the Comparison Theorem to determine wheth integral is convergent or divergent.

49.
$$\int_{1}^{\infty} \frac{\cos^{2}x}{1+x^{2}} \, dx$$

50.
$$\int_{1}^{\infty} \frac{2 + e^{-x}}{x} dx$$

$$\mathbf{51.} \int_{1}^{\infty} \frac{dx}{x + e^{2x}}$$

$$52. \int_1^\infty \frac{x}{\sqrt{1+x^6}} \, dx$$

$$\mathbf{53.} \ \int_0^{\pi/2} \frac{dx}{x \sin x}$$

54.
$$\int_0^1 \frac{e^{-x}}{\sqrt{x}} dx$$

$$\int_0^\infty \frac{1}{\sqrt{x} (1+x)} \, dx$$

is improper for two reasons: The interval $[0, \infty)$ is infinite integrand has an infinite discontinuity at 0. Evaluate expressing it as a sum of improper integrals of Type 2. Type 1 as follows:

$$\int_0^\infty \frac{1}{\sqrt{x}(1+x)} dx = \int_0^1 \frac{1}{\sqrt{x}(1+x)} dx + \int_1^\infty \frac{1}{\sqrt{x}(1+x)} dx$$