EXAMPLE 5 Calculate $\lim_{x \to 0} x \cot x$.

SOLUTION Here we divide numerator and denominator by x:

= 1

AM

A

M

$$\lim_{x \to 0} x \cot x = \lim_{x \to 0} \frac{x \cos x}{\sin x}$$
$$= \lim_{x \to 0} \frac{\cos x}{\frac{\sin x}{x}} = \frac{\lim_{x \to 0} \cos x}{\lim_{x \to 0} \frac{\sin x}{x}}$$

 $=\frac{\cos 0}{2}$

2. $f(x) = x \sin x$

10. $y = \frac{1 + \sin x}{x + \cos x}$

12. $y = \frac{\tan x - 1}{2}$

4. $y = 2 \csc x + 5 \cos x$

6. $g(t) = 4 \sec t + \tan t$

8. $y = u(a \cos u + b \cot u)$

sec x

14. $y = \csc \theta (\theta + \cot \theta)$

(by the continuity of cosine and Equation 2)

3.5 Exercises

-16 III Differentiate.
1. $f(x) = x - 3 \sin x$
3. $y = \sin x + 10 \tan x$
5. $g(t) = t^3 \cos t$
7. $h(\theta) = \theta \csc \theta - \cot \theta$
9. $y = \frac{x}{\cos x}$
11. $f(\theta) = \frac{\sec \theta}{1 + \sec \theta}$
$13. \ y = \frac{\sin x}{x^2}$

- **16.** $y = x \sin x \cos x$ 15. $y = \sec \theta \tan \theta$
- 17. Prove that $\frac{d}{dx}(\csc x) = -\csc x \cot x$.
- **18.** Prove that $\frac{d}{dx}(\sec x) = \sec x \tan x$.
- **19.** Prove that $\frac{d}{dx}(\cot x) = -\csc^2 x.$
- **20.** Prove, using the definition of derivative, that if $f(x) = \cos x$, then $f'(x) = -\sin x$.

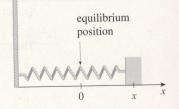
21-24 III Find an equation of the tangent line to the curve at the given point.

22. $y = (1 + x) \cos x$, (0, 1) **21.** $y = \tan x$, $(\pi/4, 1)$ **23.** $y = x + \cos x$, (0, 1) **24.** $y = \frac{1}{\sin x + \cos x}$, (0, 1)

- 25. (a) Find an equation of the tangent line to the curve $y = x \cos x$ at the point $(\pi, -\pi)$.
- (b) Illustrate part (a) by graphing the curve and the tar on the same screen.
- 26. (a) Find an equation of the tangent line to the curve $y = \sec x - 2 \cos x$ at the point $(\pi/3, 1)$.
- (b) Illustrate part (a) by graphing the curve and the tar on the same screen.
- **27.** (a) If $f(x) = 2x + \cot x$, find f'(x).
 - (b) Check to see that your answer to part (a) is reason graphing both f and f' for $0 < x < \pi$.

28. (a) If $f(x) = \sqrt{x} \sin x$, find f'(x).

- (b) Check to see that your answer to part (a) is reason graphing both *f* and *f*' for $0 \le x \le 2\pi$.
- **29.** For what values of x does the graph of f(x) = x + 2. a horizontal tangent?
- **30.** Find the points on the curve $y = (\cos x)/(2 + \sin x)$ the tangent is horizontal.
- 31. A mass on a spring vibrates horizontally on a smooth surface (see the figure). Its equation of motion is x(t)where t is in seconds and x in centimeters. (a) Find the velocity at time t.
 - (b) Find the position and velocity of the mass at time
 - $t = 2\pi/3$. In what direction is it moving at that ti



12. An elastic band is hung on a hook and a mass is hung on the lower end of the band. When the mass is pulled downward and then released, it vibrates vertically. The equation of motion is $s = 2\cos t + 3\sin t$, $t \ge 0$, where s is measured in centimeters and t in seconds. (We take the positive direction to be downward.)

(a) Find the velocity at time t.

- (b) Graph the velocity and position functions.
- (c) When does the mass pass through the equilibrium position for the first time?
- (d) How far from its equilibrium position does the mass travel? (e) When is the speed the greatest?

33. A ladder 10 ft long rests against a vertical wall. Let θ be the angle between the top of the ladder and the wall and let x be the distance from the bottom of the ladder to the wall. If the bottom of the ladder slides away from the wall, how fast does x change with respect to θ when $\theta = \pi/3$?

34. An object with weight W is dragged along a horizontal plane by a force acting along a rope attached to the object. If the rope makes an angle θ with the plane, then the magnitude of the force is

$$T = \frac{\mu W}{\mu \sin \theta + \cos \theta}$$

F

where μ is a constant called the *coefficient of friction*. (a) Find the rate of change of F with respect to θ . (b) When is this rate of change equal to 0?

(c) If W = 50 lb and $\mu = 0.6$, draw the graph of F as a function of θ and use it to locate the value of θ for which $dF/d\theta = 0$. Is the value consistent with your answer to part (b)?

35-44 III Find the limit.

35. lim tan 6t $37. \lim_{t \to 0} \frac{1}{\sin 2t}$ $41. \lim_{x \to 0} \frac{\cot 2x}{\csc x}$

3.6

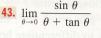
- **36.** $\lim_{x \to 0} \frac{\sin 4x}{\sin 6x}$ **38.** $\lim_{\theta \to 0} \frac{\cos \theta - 1}{\sin \theta}$ **40.** $\lim_{t\to 0} \frac{\sin^2 3t}{t^2}$ $42. \lim_{x \to \pi/4} \frac{\sin x - \cos x}{\cos 2x}$

The Chain Rule

Suppose you are asked to differentiate the function

 $F(x) = \sqrt{x^2 + 1}$

The differentiation formulas you learned in the previous sections of this chapter do not enable you to calculate F'(x).



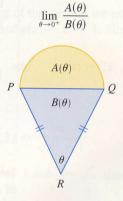
- 44. $\lim_{x \to 1} \frac{\sin(x-1)}{x^2 + x 2}$
- 45. Differentiate each trigonometric identity to obtain a new (or familiar) identity.

(a)
$$\tan x = \frac{\sin x}{\cos x}$$

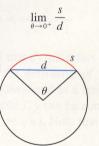
(b) $\sec x = \frac{1}{\cos x}$
(c) $\sin x + \cos x = \frac{1 + \cot x}{\csc x}$

46. A semicircle with diameter PQ sits on an isosceles triangle PQR to form a region shaped like an ice-cream cone, as shown in the figure. If $A(\theta)$ is the area of the semicircle and $B(\theta)$ is the area of the triangle, find

 $\cot x$



47. The figure shows a circular arc of length s and a chord of length d, both subtended by a central angle θ . Find



ave

ne

nt,