If we put n = 1/x in Formula 8, then $n \to \infty$ as $x \to 0^+$ and so an alternative expression for e is

9

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

7.4 Exercises

ise this

e 6 and a

I. Explain why the natural logarithmic function $y = \ln x$ is used much more frequently in calculus than the other logarithmic functions $y = \log_a x$.

1-24 III Differentiate the function.

$$1 \cdot f(x) = \ln(x^2 + 10)$$

$$1 f(\theta) = \ln(\cos \theta)$$

4.
$$f(x) = \cos(\ln x)$$

$$f(x) = \log_2(1 - 3x)$$

6.
$$f(x) = \log_{10}\left(\frac{x}{x-1}\right)$$

1.
$$f(x) = \sqrt[5]{\ln x}$$

8.
$$f(x) = \ln \sqrt[5]{x}$$

$$f(x) = \sqrt{x} \ln x$$

$$10. \ f(t) = \frac{1 + \ln t}{1 - \ln t}$$

II.
$$F(t) = \ln \frac{(2t+1)^3}{(3t-1)^4}$$

12.
$$h(x) = \ln(x + \sqrt{x^2 - 1})$$

14.
$$F(y) = y \ln(1 + e^y)$$

$$\text{Is. } f(u) = \frac{\ln u}{1 + \ln(2u)}$$

16.
$$y = \ln(x^4 \sin^2 x)$$

11.
$$h(t) = t^3 - 3^t$$
 18. $y = 10^{\tan \theta}$

$$\iint y = \ln |2 - x - 5x^2|$$

$$\text{M } G(u) = \ln \sqrt{\frac{3u+2}{3u-2}}$$

$$11 y = \ln(e^{-x} + xe^{-x})$$

22.
$$y = [\ln(1 + e^x)]^2$$

$$x = 5^{-1/x}$$

24.
$$y = 2^{3^{x^2}}$$

25-28 IIII Find y' and y".

25.
$$y = x \ln x$$

26.
$$y = \frac{\ln x}{x^2}$$

27.
$$y = \log_{10} x$$

28.
$$y = \ln(\sec x + \tan x)$$

29–32 IIII Differentiate f and find the domain of f.

29.
$$f(x) = \frac{x}{1 - \ln(x - 1)}$$

30.
$$f(x) = \frac{1}{1 + \ln x}$$

31.
$$f(x) = x^2 \ln(1 - x^2)$$

32.
$$f(x) = \ln \ln \ln x$$

33. If
$$f(x) = \frac{x}{\ln x}$$
, find $f'(e)$.

34. If
$$f(x) = x^2 \ln x$$
, find $f'(1)$.

35-36 IIII Find an equation of the tangent line to the curve at the given point.

35.
$$y = \ln \ln x$$
, $(e, 0)$

36.
$$y = \ln(x^3 - 7)$$
, (2, 0)

37–38 IIII Find f'(x). Check that your answer is reasonable by comparing the graphs of f and f'.

37.
$$f(x) = \sin x + \ln x$$

38.
$$f(x) = x^{\cos x}$$

39-50 IIII Use logarithmic differentiation to find the derivative of the function.

39.
$$y = (2x + 1)^5(x^4 - 3)^6$$

40.
$$y = \sqrt{x} e^{x^2} (x^2 + 1)^{10}$$

42.
$$y = \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}}$$

43.
$$y = x^x$$

44.
$$y = x^{1/x}$$

45.
$$y = x^{\sin x}$$

46.
$$y = (\sin x)^x$$

47.
$$y = (\ln x)^x$$

48.
$$y = x^{\ln x}$$

49.
$$y = x^{e^x}$$

50.
$$y = (\ln x)^{\cos x}$$

51. Find
$$y'$$
 if $y = \ln(x^2 + y^2)$.

52. Find
$$y'$$
 if $x^y = y^x$.

53. Find a formula for
$$f^{(n)}(x)$$
 if $f(x) = \ln(x-1)$.

54. Find
$$\frac{d^9}{dx^9}(x^8 \ln x)$$
.

55-56 III Use a graph to estimate the roots of the equation. Then use these estimates as the initial approximations in Newton's method to find the roots correct to six decimal places.

55.
$$(x-4)^2 = \ln x$$

56.
$$ln(4-x^2)=x$$

57. Find the intervals of concavity and the inflection points of the function $f(x) = (\ln x)/\sqrt{x}$.

58. Find the absolute minimum value of the function $f(x) = x \ln x$.

59–62 IIII Discuss the curve under the guidelines of Section 4.5.

59.
$$y = \ln(\sin x)$$

60.
$$y = \ln(\tan^2 x)$$

61.
$$y = \ln(1 + x^2)$$

62.
$$y = \ln(x^2 - 3x + 2)$$

- [AS] 63. If $f(x) = \ln(2x + x \sin x)$, use the graphs of f, f', and f'' to estimate the intervals of increase and the inflection points of f on the interval (0, 15].
- **64.** Investigate the family of curves $f(x) = \ln(x^2 + c)$. What happens to the inflection points and asymptotes as c changes? Graph several members of the family to illustrate what you discover.

65-76 IIII Evaluate the integral.

65.
$$\int_{2}^{4} \frac{3}{x} dx$$

66.
$$\int_{1}^{2} \frac{4 + u^{2}}{u^{3}} du$$

67.
$$\int_{1}^{2} \frac{dt}{8 - 3t}$$

68.
$$\int_{4}^{9} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right)^{2} dx$$

69.
$$\int_{1}^{e} \frac{x^{2} + x + 1}{x} dx$$

$$70. \int_{e}^{6} \frac{dx}{x \ln x}$$

71.
$$\int \frac{2 - x^2}{6x - x^3} \, dx$$

$$72. \int \frac{\cos x}{2 + \sin x} \, dx$$

$$73. \int \frac{(\ln x)^2}{x} dx$$

$$74. \int \frac{e^x}{e^x + 1} \, dx$$

75.
$$\int_{1}^{2} 10^{t} dt$$

76.
$$\int x2^{x^2} dx$$

77. Show that $\int \cot x \, dx = \ln |\sin x| + C$ by (a) differentiating the right side of the equation and (b) using the method of Example 11.

78. Find, correct to three decimal places, the area of the region above the hyperbola y = 2/(x - 2), below the x-axis, and between the lines x = -4 and x = -1.

79. Find the volume of the solid obtained by rotating the region under the curve

$$y = \frac{1}{\sqrt{x+1}}$$

from 0 to 1 about the x-axis.

80. Find the volume of the solid obtained by rotating the region under the curve

$$y = \frac{1}{x^2 + 1}$$

from 0 to 3 about the y-axis.

81. The work done by a gas when it expands from volume V_1 to volume V_2 is $W = \int_{V_1}^{V_2} P \ dV$, where P = P(V) is the pressure as a function of the volume V. (See Exercise 27 in Section 6.4.) Boyle's Law states that when a quantity of gas expands at constant temperature, PV = C, where C is a constant. If the initial volume is 600 cm³ and the initial pressure is 150 kPa, find the work done by the gas when it expands at constant temperature to 1000 cm³.

82. Find f if $f''(x) = x^{-2}$, x > 0, f(1) = 0, and f(2) = 0.

83. If g is the inverse function of $f(x) = 2x + \ln x$, find g'(2).

84. If $f(x) = e^x + \ln x$ and $h(x) = f^{-1}(x)$, find h'(e).

85. For what values of m do the line y = mx and the curve $y = x/(x^2 + 1)$ enclose a region? Find the area of the region

86. (a) Find the linear approximation to $f(x) = \ln x$ near l.

(b) Illustrate part (a) by graphing f and its linearization.

(c) For what values of x is the linear approximation accurate within 0.1?

87. Use the definition of derivative to prove that

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

88. Show that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$ for any x>0.

7.2– and

IGU

0

FIGU

FIGUI

0