7.2 Exercises

- l. (a) Write an equation that defines the exponential function with base a > 0.
- (b) What is the domain of this function?
- (c) If $a \neq 1$, what is the range of this function? (d) Sketch the general shape of the graph of the exponential function for each of the following cases.

(i) a > 1 (ii) a = 1(iii) 0 < a < 1

- **1** (a) How is the number e defined?
 - (b) What is an approximate value for e? (c) What is the natural exponential function?

3-6 III Graph the given functions on a common screen. How are these graphs related?

3. $y = 2^x$, $y = e^x$, $y = 5^x$, $y = 20^x$ 4. $y = e^{x}$, $y = e^{-x}$, $y = 8^{x}$, $y = 8^{-x}$ 5. $y = 3^x$, $y = 10^x$, $y = (\frac{1}{3})^x$, $y = (\frac{1}{10})^x$ **6.** $y = 0.9^x$, $y = 0.6^x$, $y = 0.3^x$, $y = 0.1^x$

.

1-12 Make a rough sketch of the graph of the function. Do not use a calculator. Just use the graphs given in Figures 3 and 12 and, f necessary, the transformations of Section 1.3.

.

7. $y = 4^x - 3$	8. $y = 4^{x-3}$
9. $y = -2^{-x}$	10. $y = 1 + 2e^x$
11. $y = 3 - e^x$	12. $y = 2 + 5(1 - e^{-x})$

13. Starting with the graph of $y = e^x$, write the equation of the graph that results from (a) shifting 2 units downward (b) shifting 2 units to the right (c) reflecting about the x-axis

(d) reflecting about the y-axis

(e) reflecting about the x-axis and then about the y-axis

14. Starting with the graph of $y = e^x$, find the equation of the graph that results from (a) reflecting about the line y = 4(b) reflecting about the line x = 2

15-16 III Find the domain of each function.

15. (a)
$$f(x) = \frac{1}{1 + e^x}$$
 (b) $f(x) = \frac{1}{1 - e^x}$

.

16. (a)
$$g(t) = \sin(e^{-t})$$

(b)
$$g(t) = \sqrt{1 - 2^t}$$

17–18 III Find the exponential function $f(x) = Ca^x$ whose graph is given.

- 19. Suppose the graphs of $f(x) = x^2$ and $g(x) = 2^x$ are drawn on a coordinate grid where the unit of measurement is 1 inch. Show that, at a distance 2 ft to the right of the origin, the height of the graph of f is 48 ft but the height of the graph of g is about 265 mi.
- **20.** Compare the rates of growth of the functions $f(x) = x^5$ and $q(x) = 5^x$ by graphing both functions in several viewing rectangles. Find all points of intersection of the graphs correct to one decimal place.
- **21.** Compare the functions $f(x) = x^{10}$ and $g(x) = e^x$ by graphing both f and g in several viewing rectangles. When does the graph of g finally surpass the graph of f?

+ cu)

 \checkmark 22. Use a graph to estimate the values of x such that $e^x > 1,000,000,000.$

23–28 III Find the limit.

23. $\lim_{x\to\infty} (1.001)^x$	24.	$\lim_{x\to\infty}e^{-x^2}$
25. $\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}}$	26.	$\lim_{x\to(\pi/2)^+}e^{\tan x}$
27. $\lim_{x \to 2^+} e^{3/(2-x)}$	28.	$\lim_{x\to 2^-} e^{3/(2-x)}$
	•	ev "o nai "o ste
29–42 III Differentiate the function	6.	
29. $f(x) = x^2 e^x$	30.	$y = \frac{e^x}{1+x}$
31. $y = e^{ax^3}$	32.	$y = e^u(\cos u)$
33. $f(u) = e^{1/u}$	34.	$g(x)=\sqrt{x}\ e^x$
35. $F(t) = e^{t \sin 2t}$	36.	$y = e^{k \tan \sqrt{x}}$
37. $y = \sqrt{1 + 2e^{3x}}$	38.	$v = \cos(e^{\pi x})$