- **3.** Let $g(x) = \int_0^x f(t) dt$, where f is the function whose graph is shown.
 - (a) Evaluate g(0), g(1), g(2), g(3), and g(6).
 - (b) On what interval is g increasing?
 - (c) Where does g have a maximum value?
 - (d) Sketch a rough graph of g.

- **4.** Let $g(x) = \int_{-3}^{x} f(t) dt$, where f is the function whose graph is
 - (a) Evaluate g(-3) and g(3).
 - (b) Estimate g(-2), g(-1), and g(0).
 - (c) On what interval is g increasing?
 - (d) Where does g have a maximum value?
 - (e) Sketch a rough graph of g.
 - (f) Use the graph in part (e) to sketch the graph of g'(x). Compare with the graph of f.

5–6 IIII Sketch the area represented by g(x). Then find g'(x) in two ways: (a) by using Part 1 of the Fundamental Theorem and (b) by evaluating the integral using Part 2 and then differentiating.

5.
$$g(x) = \int_{1}^{x} t^{2} dt$$

6.
$$g(x) = \int_0^x (1 + \sqrt{t}) dt$$

7-18 IIII Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function.

7.
$$g(x) = \int_0^x \sqrt{1 + 2t} \, dt$$

8.
$$g(x) = \int_1^x (2 + t^4)^5 dt$$

9.
$$g(y) = \int_2^y t^2 \sin t \, dt$$

9.
$$g(y) = \int_2^y t^2 \sin t \, dt$$
 10. $g(u) = \int_3^u \frac{1}{x + x^2} \, dx$

11.
$$F(x) = \int_{x}^{2} \cos(t^{2}) dt$$

$$Hint: \int_{x}^{2} \cos(t^{2}) dt = -\int_{2}^{x} \cos(t^{2}) dt$$

$$12. \ F(x) = \int_x^{10} \tan \theta \, d\theta$$

13.
$$h(x) = \int_2^{1/x} \sin^4 t \, dt$$

14.
$$h(x) = \int_0^{x^2} \sqrt{1 + r^3} \, dr$$

$$15. y = \int_3^{\sqrt{x}} \frac{\cos t}{t} dt$$

16.
$$y = \int_{1}^{\cos x} (t + \sin t) dt$$

$$17. \ y = \int_{1-3x}^{1} \frac{u^3}{1+u^2} \, du$$

18.
$$y = \int_{1/x^2}^0 \sin^3 t \, dt$$

19-36 IIII Use Part 2 of the Fundamental Theorem of Calculus to evaluate the integral, or explain why it does not exist.

19.
$$\int_{-1}^{3} x^5 dx$$

20.
$$\int_{-2}^{5} 6 \, dx$$

21.
$$\int_{2}^{8} (4x + 3) dx$$

22.
$$\int_0^4 (1 + 3y - y^2) \, dy$$

47. I

CAS 50. T

23.
$$\int_0^1 x^{4/5} dx$$

24.
$$\int_{1}^{8} \sqrt[3]{x} \, dx$$

25.
$$\int_1^2 \frac{3}{t^4} dt$$

26.
$$\int_{-2}^{3} x^{-5} dx$$

27.
$$\int_{-5}^{5} \frac{2}{x^3} dx$$

$$28. \int_{\pi}^{2\pi} \cos \theta \, d\theta$$

29.
$$\int_0^2 x(2+x^5) dx$$

30.
$$\int_{1}^{4} \frac{1}{\sqrt{x}} dx$$

31.
$$\int_0^{\pi/4} \sec^2 t \, dt$$

32.
$$\int_0^1 \left(3 + x\sqrt{x}\right) dx$$

$$33. \int_{\pi}^{2\pi} \csc^2\theta \, d\theta$$

34.
$$\int_0^{\pi/6} \csc\theta \cot\theta \, d\theta$$

35.
$$\int_0^2 f(x) dx \text{ where } f(x) = \begin{cases} x^4 & \text{if } 0 \le x < 1 \\ x^5 & \text{if } 1 \le x \le 2 \end{cases}$$

36.
$$\int_{-\pi}^{\pi} f(x) dx$$
 where $f(x) = \begin{cases} x & \text{if } -\pi \le x \le 0 \\ \sin x & \text{if } 0 < x \le \pi \end{cases}$

37-40 IIII Use a graph to give a rough estimate of the area of the region that lies beneath the given curve. Then find the exact area

37.
$$y = \sqrt[3]{x}$$
, $0 \le x \le 27$

38.
$$y = x^{-4}, \quad 1 \le x \le 6$$

39.
$$y = \sin x, \ 0 \le x \le \pi$$

40.
$$y = \sec^2 x, \ 0 \le x \le \pi/3$$

41.
$$\int_{-1}^{2} x^3 dx$$

42.
$$\int_{\pi/4}^{5\pi/2} \sin x \, dx$$

43-46 III Find the derivative of the function.

$$43. g(x) = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$

$$\left[\text{ Hint: } \int_{2x}^{3x} f(u) \, du = \int_{2x}^{0} f(u) \, du + \int_{0}^{3x} f(u) \, du \right]$$

4.
$$g(x) = \int_{\tan x}^{x^2} \frac{1}{\sqrt{2 + t^4}} dt$$

$$45. y = \int_{\sqrt{x}}^{x^3} \sqrt{t} \sin t \, dt$$

16.
$$y = \int_{\sqrt{x}}^{x^3} \sqrt{t} \sin t \, dt$$
 16. $y = \int_{\cos x}^{5x} \cos(u^2) \, du$

$$\P. \text{ If } F(x) = \int_{1}^{x} f(t) \, dt, \text{ where } f(t) = \int_{1}^{t^2} \frac{\sqrt{1 + u^4}}{u} \, du,$$
find $F''(2)$.

4. Find the interval on which the curve

$$y = \int_0^x \frac{1}{1 + t + t^2} \, dt$$

is concave upward.

- \P . The Fresnel function S was defined in Example 3 and graphed in Figures 7 and 8.
- (a) At what values of x does this function have local maximum
- (b) On what intervals is the function concave upward?
- (c) Use a graph to solve the following equation correct to two decimal places:

$$\int_0^x \sin(\pi t^2/2) \, dt = 0.2$$

M. The sine integral function

$$\operatorname{Si}(x) = \int_0^x \frac{\sin t}{t} \, dt$$

is important in electrical engineering. [The integrand

 $f(t) = (\sin t)/t$ is not defined when t = 0, but we know that its limit is 1 when $t \to 0$. So we define f(0) = 1 and this makes f a continuous function everywhere.]

- (a) Draw the graph of Si.
- (b) At what values of x does this function have local maximum
- (c) Find the coordinates of the first inflection point to the right of the origin.

- (d) Does this function have horizontal asymptotes?
- (e) Solve the following equation correct to one decimal place:

$$\int_0^x \frac{\sin t}{t} dt = 1$$

51–52 IIII Let $g(x) = \int_0^x f(t) dt$, where f is the function whose graph is shown.

- (a) At what values of x do the local maximum and minimum values of *q* occur?
- Where does g attain its absolute maximum value?
- On what intervals is g concave downward?
- (d) Sketch the graph of g.

52.

53-54 III Evaluate the limit by first recognizing the sum as a Riemann sum for a function defined on [0, 1].

53.
$$\lim_{n\to\infty} \sum_{i=1}^{n} \frac{i^3}{n^4}$$

54.
$$\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \sqrt{\frac{3}{n}} + \cdots + \sqrt{\frac{n}{n}} \right)$$

- **55.** Justify (3) for the case h < 0.
- **56.** If f is continuous and g and h are differentiable functions, find a formula for

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) dt$$

- **57.** (a) Show that $1 \le \sqrt{1 + x^3} \le 1 + x^3$ for $x \ge 0$.
 - (b) Show that $1 \le \int_0^1 \sqrt{1 + x^3} \, dx \le 1.25$.