Assignment # 5. Due Feb. 24, 17:00

Problem 1. Differentiate

a.
$$\int_{-10}^{x} e^{t} dt$$
, **b.** $\int_{2}^{x^{2}} \ln t dt$, **c.** $\int_{\sin x}^{4} t^{2} dt$, **d.** $\int_{\tan x}^{\frac{1}{x}} \frac{1}{t} dt$

Problem 2. Let f be a bounded integrable non-negative function on [a, b]. Is it true that

a.
$$\int_{a}^{b} f(x) dx = 0$$
 implies $f(x) = 0$ for every x .
b. $\int_{a}^{b} f(x) dx = 0$ and f is continuous on $[a, b]$ implies $f(x) = 0$ for every x .

Problem 3. Assume that $\lim_{x\to a} f(x) = L > 0$ and $\lim_{x\to a} g(x) = M$. Prove that $\lim_{x\to a} f(x)^{g(x)} = L^M$.

Problem 4. Find domains of the following functions.

a.
$$f(x) = \log_2(x-3) + \log_7(5-x),$$
 b. $g(x) = \log_2 \log_3 \log_4 x,$

c.
$$f(x) = \left(\log_{\sqrt{3}} \tan x\right)^{\pi}$$
,

Problem 5. Let $a > 0, x \in \mathbb{R}$. Prove that

$$a^{-x} = \frac{1}{a^x}$$

(you may use that this holds for $x \in \mathbb{Q}$ and facts proved in class).