
Assignment # 5.

Due Feb. 24, 17:00

Problem 1. Differentiate

a.
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ln t dt, c.
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Problem 2. Let f be a bounded integrable non-negative function on
[a, b]. Is it true that

a.
∫ b

a
f(x) dx = 0 implies f(x) = 0 for every x.

b.
∫ b

a
f(x) dx = 0 and f is continuous on [a, b] implies f(x) = 0 for every x.

Problem 3. Assume that lim
x→a

f(x) = L > 0 and lim
x→a

g(x) = M . Prove

that lim
x→a

f(x)g(x) = LM .

Problem 4. Find domains of the following functions.

a. f(x) = log2(x−3)+log7(5−x), b. g(x) = log2 log3 log4 x,

c. f(x) =
(
log√3 tan x

)π
,

Problem 5. Let a > 0, x ∈ R. Prove that

a−x =
1

ax

(you may use that this holds for x ∈ Q and facts proved in class).
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