Since $\delta < 1/2$, the last two insonalities imply (2)

Please check this proof carefully, because of so many constants I might have made a stupid mistake

2.3 Dependence on a

The dependence on s in the Gaussian case, decribed in Theorem 1 is better than in Theorem 2. Although we cannot prove the same dependence in the general case, the inequality (2) gives the following corollary.

Corollary 16 For any $\delta \in (0,1)$, there exists C_{δ_1} depending only on δ_1 such that for $n \ge 1$ and $\varepsilon \in (0,1)$,

$$P(\inf_{x \in \mathbb{R}^{n-1/2}} | \text{Tr} | \le cn^{-1/2}) \le C_0 e^{2-\delta}.$$
 (6)

Froof Let us fix $\delta \in (0,1)$. For large n, the inequality (6) follows from (2). It is therefore enough to show that for every n there exists C_k such that

$$\mathbb{P}(\inf_{x} | |\Gamma x| \le \epsilon n^{-1/2}) \le C \epsilon^{1-\delta}.$$
 (7)

In what follows we will work with fixed a and use the letter C to denote a positive number depending only on a and d. Its value may change from line to line:

Let $\nu = \mu^{***}$ denote the law of the matrix I (so ν is a borel measure of the space of $n \times n$ matrices, which we will identify with \mathbb{R}^{n^*}). By Lemma 8

$$\nu(\|\Gamma\| \ge C\log(1/\varepsilon)) \le \varepsilon. \tag{8}$$

Moreover, by Lemma 6, the density of the measure ν is bounded (by a number depending on n). Therefore

P	Q	not P	P -> Q	Paul Q	Por Q	
T	T	F	T	T	T	
T	F	F	F	F	5 T	
F	т	7	T	F	T	
F	F	7	- KORI	E IN E SE	F	Avery a