
Solutions of Assignment # 9.

Problem 1. Is the following definition equivalent to the definition of a Cauchy (fundamental)
sequence? As usual, prove if YES, provide a counterexample if NO.

∀ε > 0 ∃N ∈ N ∀n ≥ N |xn − xn+1| < ε.

Solution.
Analysis Before to write the actual solution let us analyse the new definition and compare it with
the old one. In the old (correct) definition we are asked to compare distances |xm−xn| for all large
m and n without any restrictions on relations between n and m. Here we compare only distances
between n and n + 1. In other words, in the new definition we are forced to take m = n + 1. Of
course, such an addition should spoil the property “to be fundamental”: the new definition is much
less restrictive. Therefore we will be trying to prove that the answer is NO and that there exists
a sequence which satisfies the new definition (which is less restrictive), but fails to satisfy the old
definition. In order to do that we notice that for all m > n we have

xm − xn = (xm − xm−1) + (xm−1 − xm−2) + ... + (xn+2 − xn+1) + (xm+1 − xn).

In other words, we want to find a sequence such that all differences above are positive and small
(to satisfy a new definition) but the sum is big for big enough m (of course, m should be much
larger that n). So we have to find a sequence yn = xn+1−xn with two properties: sum of yn’s is big
(actually unbounded), but each yn is very small (actually goes to 0). We had an example of such a
sequence in class: 1/n (remember, Harmonic series is divergent).
Actual Solution. We show that answer is NO by considering the following example. Let {xn}∞n=1

be defined by

xn =
n∑

k=1

1

k
.

In class we proved that {xn}∞n=1 is not fundamental. On the other hand, given ε > 0 we choose
N > 1/ε. Then for all n ≥ N one has

|xn+1 − xn| =
1

n + 1
<

1

N
< ε,

which shows that the sequence satisfies the new definition. 2

Answer. NO.

Problem 2. Let {xn}∞n=1 and {yn}∞n=1 be two convergent (in R) sequences such that xn ≥ yn

for all n ∈ N. Show that
lim

n→∞
xn ≥ lim

n→∞
yn.

Solution.
Analysis Again we start with analysis. We are going to argue by contradiction. From the definition
of the limit we know that the tail of a convergent sequence is very close to the limit, namely it is
in a small interval around the limit and it is up to us how small interval to choose. So if the first
limit is strictly smaller that the second one, we will choose intervals around both limits in such a
way that they don’t intersect (draw a picture!). Then, clearly, we can’t satisfy the condition.



Actual Proof. We argue by contradiction. Denote

a = lim
n→∞

xn, b = lim
n→∞

yn

and assume a < b. Choose ε = (b − a)/3 and apply the definition of the limit to both sequences.
There exists N1 such that for every n ≥ N1

|xn − a| < ε,

and there exists N2 such that for every n ≥ N2

|yn − b| < ε.

Note
|xn − a| < ε ⇔ xn ∈ (a− ε, a + ε) ⇒ xn ≤ a + ε

and
|yn − b| < ε ⇔ yn ∈ (b− ε, b + ε) ⇒ yn ≥ b− ε.

Now take N = max{N1, N2}. Then we have

xN ≤ a + ε and yN ≥ b− ε.

Finally note that a + ε < b − ε (since ε = (b − a)/3, so b − a > 2ε), which implies xN < yN . It
contradicts the condition on sequences. 2

Problem 3. Using only the definition, prove that

lim
n→∞

(−n2 + 10n + 100) = −∞.

Solution. Fix M ≥ 0. Choose N > M + 100. Then for every n ≥ N we have

−n2 + 10n + 100 = −n(n− 10) + 100 < −n + 100 ≤ −N + 100 < −M

(in the first inequality we used n ≥ N > 100 > 11). It proves the result. 2

Problem 4. Let xn =
√

n2 + 4n + 5− n. Is {xn}∞n=1 convergent? If YES find the limit, if NOT
explain why.

Solution. We have

xn =
(
√

n2 + 4n + 5− n)(
√

n2 + 4n + 5 + n)√
n2 + 4n + 5 + n

=
n2 + 4n + 5− n2

√
n2 + 4n + 5 + n

=
4n + 5√

n2 + 4n + 5 + n
=

4 + 5/n√
1 + 4/n + 5/n2 + 1

.

Since
lim

n→∞
5/n2 = lim

n→∞
4/n = lim

n→∞
5/n = 0,

as was discussed many times, and since

lim
n→∞

√
zn =

√
lim

n→∞
zn



for a non-negative sequence, as was proved in one of previous assignments, we obtain that the limit
of our sequence exists and

lim
n→∞

xn =
4 + 0√

1 + 0 + 0 + 1
= 2.

2

Answer.
lim

n→∞
(
√

n2 + 4n + 5− n) = 2.

Problem 5. Let xn ≥ 0 for all n ∈ N. Assume that

∞∑
n=1

xn < ∞.

Prove that
lim

n→∞
xn = 0.

Solution. Denote

Sm =
m∑

n=1

xn.

Clearly {Sm}∞m=1 is increasing, so it has limit and we are given that this limit is in R (recall here∑∞
n=1 xn = limm→∞ Sm).

Way 1. Denote this limit by ` and let Tm = Sm+1. Clearly,

lim
m→∞

Tm = lim
m→∞

Sm = `

(because {Tm}∞m=1 is a tail of {Sm}∞m=1). Since for every n one has xn = Tn − Sn we obtain by the
corresponding theorem that limit of {xn}∞n=1 exists and

lim
n→∞

xn = lim
n→∞

Tn − lim
n→∞

Sn = `− ` = 0.

Way 2. Since {Sm}∞m=1 is convergent, by the Cauchy criterion, we obtain that {Sm}∞m=1 is funda-
mental. Thus for every ε > 0 there exists N ∈ N such that for every n, m ≥ N one has

|Sn − Sm| < ε.

In particular, taking m = n + 1 we have for all n ≥ N

|xn| = |Sn+1 − Sn| < ε.

It proves that for every ε > 0 there exists N ∈ N such that for every n ≥ N one has |xn| =
|Sn+1 − Sn| < ε, which means xn → 0 as n →∞. 2


