
Solutions of Assignment # 7.

Problem 1. Let ` ∈ R, c ∈ R, c > 0. Show that the following two statements are equivalent.

a. ∀ε > 0 ∃N ∈ N ∀n ≥ N |xn − `| < ε;

b. ∀ε > 0 ∃N ∈ N ∀n ≥ N |xn − `| < cε.

Solution. To avoid misleading notation we rewrite the first statement as

A. ∀δ > 0 ∃m ∈ N ∀n ≥ m |xn − `| < δ.

Clearly, Statement A is exactly the same as Statement a.

Par 1. A =⇒ b. We assume that Statement A is true.
Fix an arbitrary ε > 0. Apply Statement A with δ = cε > 0. There exist m ∈ N such that

∀n ≥ m |xn − `| < δ = cε. Choose N = m. Then ∀n ≥ N |xn − `| < cε. We proved b.

Par 2. b =⇒ A. We assume that Statement b is true.
Fix an arbitrary δ > 0. Apply Statement b with ε = δ/c > 0. There exists N ∈ N such that

∀n ≥ N |xn − `| < cε = δ. Choose m = N . Then ∀n ≥ N |xn − `| < δ. We proved A. 2

Remark. Recall that to prove a statement like ∀x ∃y... one has to prove an existence of a “good”
function y(x). Note that Statement A provides the existence of a “good” function m = m(δ), while
Statement b provides the existence of a “good” function N = N(ε). In Part 1 of our proof we used
the existence of m(δ) and defined N(ε) = m(cε). In Part 2, we used the existence of N(ε) and
defined m(δ) = N(δ/c).

Problem 2. Let {xn}∞n=1 be a sequence convergent to 0. Let {yn}∞n=1 be a bounded sequence.
Show that

lim
n→∞

(xnyn) = 0.

Solution.
Since {yn}∞n=1 is a bounded sequence, there exists M > 0 such that for every n ∈ N |yn| ≤ M .
Now fix ε > 0. Since xn → 0, applying the definition of the limit (see Statements a and A in
Problem 1 above) with δ = ε/M , we obtain that there exists N ∈ N such that ∀n ≥ N one has
|xn| < δ = ε/M . Therefore, for n ≥ N we have |xnyn| ≤ |xn| |yn| < δM = ε. So we proved

∀ε > 0 ∃N ∈ N ∀n ≥ N |xnyn − 0| < ε, that is lim
n→∞

(xnyn) = 0.
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Problem 3. Let {xn}∞n=1 be a sequence convergent to 0. Is it true that for every sequence
{yn}∞n=1 one has

lim
n→∞

(xnyn) = 0

Answer and solution. No. For every n define xn = 1/n and yn = n. Then xn → 0 and
{yn}∞n=1 is divergent (as an unbounded sequence). However, xnyn → 1 as a constant sequence. 2



Problem 4. Let {xn}∞n=1 be a sequence convergent to `.
a. Prove that

lim
n→∞

x2
n = `2.

b. Assuming that for every n ∈ N an ≥ 0 and ` ≥ 0, prove that

lim
n→∞

√
xn =

√
`.

Solution.
a. Way 1. By a theorem proved in the class we have

lim
n→∞

x2
n = lim

n→∞
xnxn = lim

n→∞
xn lim

n→∞
xn = `2.

a. Way 2. First assume ` 6= 0. Note x2
n− `2 = (xn− `)(xn + `). Applying the definition of the limit

with ε = |`| > 0 we observe that there exists N1 such that for every n ≥ N1 one has |xn − `| < |`|.
It implies

∀n ≥ N1 |xn| ≤ |xn − `|+ |`| < 2|`|.

Now fix an arbitrary ε > 0. Apply the definition of the limit with ε/|2`| > 0. There exists N2

such that for every n ≥ N2 one has |xn − `| < ε/|2`|. Choose N = max{N1, N2}. Then for every
n ≥ N one has

|x2
n − `2| = |xn − `| |xn + `| < ε

|2`|
2|`| = ε.

It proves the result.
The case ` = 0 is simple (exer.).

b. Case 1 ` > 0. First, using xn ≥ 0 and ` > 0, we observe

∣∣∣√xn −
√

`
∣∣∣ =

∣∣∣∣∣(
√

xn −
√

`)(
√

xn +
√

`)
√

xn +
√

`

∣∣∣∣∣ =
|xn − `|
√

xn +
√

`
≤ |xn − `|√

`
.

Now fix an arbitrary ε > 0. Apply the definition of the limit with
√

` ε > 0. There exists N such
that for every n ≥ N one has |xn − `| <

√
` ε. It implies that for every n ≥ N one has

|
√

xn −
√

`| ≤ |xn − `|√
`

<

√
` ε√
`

= ε.

It proves the result.

b. Case 2 ` = 0. We have xn → 0. Fix an arbitrary ε > 0 and apply the definition of the limit
with ε2 > 0. There exists N such that for every n ≥ N one has |xn| < ε2. It implies that for every
n ≥ N one has |√xn| < ε. So we proved that for every ε > 0 there exists N such that for every
n ≥ N one has |√xn| < ε. It proves the result. 2

Problem 5. Find limits of the following sequences (you can use facts proved in the class).

a.

{
2n2 + n +

√
n− 3

n2 − 5n + 7

}∞
n=1

, b.

{
1 + 2 + 3 + . . . + n

n2

}∞
n=1

.

Solution.



a. We first note that for every c ∈ R and every p > 0 one has

lim
n→∞

c

np
= 0.

Indeed, for every ε > 0 take N > (1/ε)1/p. Then for every n ≥ N we have∣∣∣∣ 1

np
− 0

∣∣∣∣ ≤ 1

Np
< ε.

It shows that limn→∞
1
np = 0, which by a Theorem in the class implies

lim
n→∞

c

np
= c lim

n→∞

1

np
= 0.

Now note
2n2 + n +

√
n− 3

n2 − 5n + 7
=

2 + 1/n + 1/n3/2 − 3/n2

1− 5/n + 7/n2

and by above

lim
n→∞

1/n = lim
n→∞

1/n3/2 = lim
n→∞

3/n2 = lim
n→∞

5/n = lim
n→∞

7/n2 = 0.

Using Theorems from the class we obtain,

lim
n→∞

2n2 + n +
√

n− 3

n2 − 5n + 7
=

limn→∞(2 + 1/n + 1/n3/2 − 3/n2)

limn→∞(1− 5/n + 7/n2)
=

2

1
= 2.

b. In class we proved 1 + 2 + 3 + ... + n = n(n+1)
2

. Therefore,

lim
n→∞

1 + 2 + 3 + . . . + n

n2
= lim

n→∞

n2 + n

2n2
= lim

n→∞

1

2
+ lim

n→∞

1

2n
=

1

2
.

Answer.

a. lim
n→∞

2n2 + n +
√

n− 3

n2 − 5n + 7
= 2, b. lim

n→∞

1 + 2 + 3 + . . . + n

n2
=

1

2
.


