
Solutions of Assignment # 6.

Problem 1. Let x, y ∈ R be such that x 6= y. Prove that ∃ε > 0 such that y 6∈ [x− ε, x + ε].

Solution. Recall, y ∈ [x− ε, x + ε] means

x− ε ≤ y ≤ x + ε.

Assume first y > x. Let ε = (y − x)/2 > 0. Then

y = x + 2ε > x + ε,

in particular y 6∈ [x− ε, x + ε].
Now assume y < x. Let ε = (x− y)/2 > 0. Then

y = x− 2ε < x− ε,

in particular y 6∈ [x− ε, x + ε].
Note that if both cases we chose ε = |(x− y)/2|. 2

Problem 2. Is it true that for every two sequences {xn}∞n=1 and {yn}∞n=1 satisfying ∀n xn < yn

one has
a. sup xn ≤ sup yn? b. sup xn < sup yn?

Explain your answer (that is, prove if YES; provide a counterexample if NO).

Answer and solution.
a. Yes. Indeed, denote a = sup A and b = sup B. First, if a = ∞ then, by definitions, {xn}n∈N
is unbounded. Therefore, for every M there exists n0 ∈ N such that xn0 > M . Hence yn0 > M as
well. It shows that {yn}n∈N is also unbounded. Thus b = ∞ as well, and we have a ≤ b.

Now assume a < ∞ and also assume that a > b. Denote ε = (a − b)/2 > 0. By a theorem,
proved in the class, for this ε there exists and element of {xn}n∈N, that is, there exists xk, such that
a − ε < xk. Using a > b we have a − ε = (a + b)/2 > b. It implies yk > xk > b, which contradicts
to the definition of b (recall b = sup B, in particular, b is an upper bound for {yn}n∈N).
b. No. For every n define xn = (n − 1)/n and yn = 1. Then for every n we have xn < yn, but
sup xn = sup yn = 1.

Problem 3. A student was trying to recall the definition of a convergent sequence, and came up
with the following statements. Your job is to persuade the student that these definitions are wrong,
and not even equivalent to the correct definition. In order to do this, for each of these statements
you need to find an example of a sequence which either satisfies the statement but fails to converge,
or which converges but fails the statement (recall that a sequence {xn}∞n=1 is convergent to ` ∈ R if
∀ε > 0 ∃N ∀n ≥ N |xn − `| < ε).

a. ∀ε ≥ 0 ∃N ∈ N ∀n ≥ N |xn−`| < ε;

b. ∀ε > 0 ∃n ∈ N |xn−`| < ε;

c. ∃N ∈ N ∀ε > 0 ∀n ≥ N |xn−`| < ε;

d. ∃ε > 0 ∃N ∈ N ∀n ≥ N |xn−`| < ε;

e. ∀ε > 0 ∀N ∈ N ∃n ≥ N |xn−`| < ε.



Solution. Although for each problem it is enough to provide just ONE sequence, which provides
a counterexample (and it will be a complete solution), we provide an analysis of a statement as
well.

a. Let us note that NO sequence satisfies the statement. Indeed, the statement fails for ε = 0, since
|xn− `| is always nonnegative. Formally, for any sequence we have ∃ε ≥ 0 (namely ε = 0) such that
∀N ∈ N ∃n ≥ N (namely n = N) such that |xn − `| ≥ 0. Thus it is enough to provide a sequence,
which is convergent. We can use any example from the class or to take a constant sequence, say
xn = 0 for every n. Then 0 is clearly limit of the sequence (∀ε > 0 ∃N , namely N = 1, such that
∀n ≥ N |xn − 0| = 0 < ε).

b. Consider xn = (−1)n and ` = 1. Then ∀ε > 0 ∃n ∈ N (namely n = 2) such that |xn−`| = 0 < ε.
But xn = (−1)n is divergent as was proved in the class. (Note also that with such definition as in
“b” ANY element of a given sequence will be its limit. Indeed, fix k ∈ N and let ` = xk. Then for
every ε there exist n, namely n = k, such that |xn − `| = 0 < ε).

c. Let us first note that if y ≥ 0 satisfies ∀ε > 0 |y| < ε then y = 0. Indeed, taking ε = 1/k we
obtain that ∀k |y| < 1/k. By a theorem in the class it implies that |y| = 0. By another theorem
we obtain y = 0. Therefore

∀ε > 0 ∀n ≥ N |xn − `| < ε

implies
∀n ≥ N xn = `.

So, it is enough to take any convergent sequence which does NOT have a constant tail. For example
take xn = n/(n+1) for every n. In the class we showed that 1 is the limit. Clearly, |xn−1| = 1/n > 0
for every n, which implies that there is no N ∈ N satisfying the statement.

d. Here note that any FIXED positive ε is separated from 0, so the statement does not give that
xn “approaches” `. Moreover, one can take “big” ε.

Take again xn = (−1)n for every n. It is divergent sequence, but ∃ε > 0, namely ε = 2, such
that ` = 0 satisfies the statement (since ∀n ∈ N |xn − `| < 2).

Note here three facts. Firstly, any bounded sequence would satisfy this statement (exer.)
Secondly, any bounded sequence will have infinitely many limits with such a definition (exer.).
Finally, even if we ask “there exists a small ε”, say 0 < ε < 10−3, similar examples will work
(exer.).

e. Note that the condition ∃n ≥ N... does not say anything about the whole tail, only about a
SINGLE representative of a tail.

Consider again {xn}∞n=1 defined by xn = (−1)n and ` = 1. Then, as we mentioned before,
{xn}∞n=1 is divergent. But ∀ε > 0 ∀N ∈ N ∃n ≥ N (namely any even n bigger than N works, say
n = 2N) such that |xn − `| = 0 < ε

Note here that with such a definition a sequence can have many limits (in particular in our
example we would have two limits, namely −1 and 1). 2

Problem 4. Find limits (and then prove using the definition) of the following sequences.

a.

{
1

n2

}∞
n=1

, b.

{
(−1)n

n

}∞
n=1

, c.

{
(n + 2)2

n2

}∞
n=1

.

Solution.
a. We show that the sequence converges to 0. Let ε > 0. Choose N > 1/ε. Then for every n ≥ N
we have

|xn − 0| = 1

n2
≤ 1

n
≤ 1

N
< ε.



Thus ∀ε > 0 ∃N (namely any N > 1/ε works) such that ∀n ≥ N |xn − 0| < ε.
b. We show that the sequence converges to 0. Let ε > 0. Choose N > 1/ε. Then for every n ≥ N
we have

|xn − 0| =
∣∣∣∣(−1)n

n

∣∣∣∣ =
1

n
≤ 1

N
< ε.

Thus ∀ε > 0 ∃N (namely any N > 1/ε works) such that ∀n ≥ N |xn − 0| < ε.
c. We show that the sequence converges to 1. Let ε > 0. Choose N > 8/ε. Then for every n ≥ N
we have ∣∣∣∣(n + 2)2

n2
− 1

∣∣∣∣ =
n2 + 4n + 4− n2

n2
=

4

n
+

4

n2
≤ 8

n
≤ 8

N
< ε.

Thus ∀ε > 0 ∃N (namely any N > 8/ε works) such that ∀n ≥ N |xn − 1| < ε.
Answer.

a. lim
n→∞

1

n2
= 0, b. lim

n→∞

(−1)n

n
= 0, c. lim

n→∞

(n + 2)2

n2
= 1.


