Solutions of Assignment # 5.

Problem 1. Let r > 0. Prove that

$$|x| < r \iff -r < x < r.$$

Solution.

Part 1. $|x| < r \implies -r < x < r$. Assume |x| < r.

Case a. $x \ge 0$. In this case |x| = x. Hence we have $0 \le x = |x| < r$. It implies -r < x < r. Case b. x < 0. In this case |x| = -x. Hence we have -x < r, which implies x > -r. Thus, in this case, -r < x < 0, therefore -r < x < r.

Part 2. $-r < x < r \implies |x| < r$. Assume -r < x < r. If $x \ge 0$ then |x| = x < r. If x < 0 then |x| = -x. Since, by our assumption, x > -r, we obtain -x < r. It shows that that for x < 0 we also have |x| < r.

Problem 2. Solve and write the answer in the interval notation.

a.
$$\left|\frac{3}{2x-1}\right| < 1,$$
 b. $\left|\frac{1}{1-3x}\right| > 4.$

Solution.

a. First note that for x = 1/2 the fraction $\frac{3}{2x-1}$ is not defined (and thus x = 1/2 is not a solution). Now we consider the case $x \neq 1/2$ (and all equivalences will be under this condition).

$$\left|\frac{3}{2x-1}\right| = \frac{3}{|2x-1|} < 1 \iff 3 < |2x-1|.$$

Case 1. $2x - 1 \ge 0$. In this case |2x - 1| = 2x - 1, so we have

 $3 < 2x - 1 \iff 2 < x$

(note that any x > 2 satisfies the conditions $2x - 1 \ge 0$ and $x \ne 1/2$). Case 2. 2x - 1 < 0. In this case |2x - 1| = -(2x - 1), so we have

 $3 < -2x + 1 \iff 2 < -2x \iff x < -1.$

(note that any x < -1 satisfies the condition 2x - 1 < 0 and $x \neq 1/2$).

Combining two cases we obtain $x \in (-\infty, -1) \cup (2, \infty)$. (Note again that both intervals do not contain 1/2, so condition $x \neq 1/2$ is satisfied).

b. First note that for x = 1/3 the fraction $\frac{1}{1-3x}$ is not defined (and thus x = 1/3 is not a solution). Now we consider the case $x \neq 1/3$ (and all equivalences will be under this condition).

$$\left|\frac{1}{1-3x}\right| = \frac{1}{|3x-1|} > 4 \iff 1/4 > |3x-1| \iff -1/4 < 3x - 1 < 1/4 \iff 3/4 < 3x < 5/4,$$

which means $x \in (1/4, 5/12)$ Combining this with our condition $x \neq 1/3$, we obtain that $x \in (1/4, 1/3) \cup (1/3, 5/12)$.

Answer. a. $(-\infty, -1) \cup (2, \infty)$, **b.** $(1/4, 1/3) \cup (1/3, 5/12)$.

Problem 3. Let $S \neq \emptyset$ be a bonded (below and above) subset of \mathbb{R} . Denote $a = \inf S$, $b = \sup S$. Is it true that $\forall n \in \mathbb{N} \ \exists x \in S$ such that

a. $a > x - \frac{1}{n};$ **b.** $a > x + \frac{1}{n};$ **c.** $b < x - \frac{1}{n};$ **d.** $b < x + \frac{1}{n}.$

Answer and Solution. We use that all numbers n in \mathbb{N} (and therefore 1/n) are positive.

a. Yes. We had a theorem in class that $\forall \varepsilon > 0 \quad \exists x \in S$ such that $a > x - \varepsilon$. Applying this theorem with $\varepsilon = 1/n$ we observe the desired result.

b. No. Indeed, by the definition, a is a lower bound, that is, for every $x \in S$ one has $a \leq x$. In particular, a < x + 1/n for all $n \in \mathbb{N}$ and all $x \in S$.

c. No. Indeed, by the definition, b is an upper bound, that is, for every $x \in S$ one has $b \ge x$. In particular, b > x - 1/n for all $n \in \mathbb{N}$ and all $x \in S$.

d. Yes. We had a theorem in class that $\forall \varepsilon > 0 \quad \exists x \in S$ such that $b < x + \varepsilon$. Applying this theorem with $\varepsilon = 1/n$ we observe the desired result. \Box

Problem 4. For a given set S write sup S, inf S, max S, min S (if exist).

a. $S = \{-1, 2, 5\};$	b. $S = [1, 2];$	c. $S = (2, 3];$
d. $S = [0, 4);$	e. $S = (-\infty, 3];$	f. $S = (1, \infty);$
g. $S = \mathbb{N};$	h. $S = \mathbb{Z};$	i. $S = \emptyset$.

Answers.

a. $\sup S = \max S = 5$, $\inf S = \min S = -1$;

b. $\sup S = \max S = 2$, $\inf S = \min S = 1$;

c. $\sup S = \max S = 3$, $\inf S = 2$, $\min S$ does not exist;

d. sup S = 4, inf $S = \min S = 0$, ; max S does not exist;

e. $\sup S = \max S = 3$, $\inf S = -\infty$, ; $\min S$ does not exist;

f. sup $S = \infty$, inf $S = 1 \max S$ and min S do not exist;

g. sup $S = \infty$, inf $S = \min S = 1$, max S does not exist;

h. sup $S = \infty$, inf $S = -\infty$, max S and min S do not exist;

i. $\sup S = -\infty$, $\inf S = \infty$, $\max S$ and $\min S$ do not exist.