
Solutions of Assignment # 3.

Problem 1. Using the induction principle prove that for every x > 0 and every n ∈ N one has
(1 + x)n ≥ 1 + xn.

Solution.
1 (base). If n = 1 we have (1 + x)1 ≥ 1 + x1, which is clearly true (actually we have an equality).
2 (step). Assume the formula holds for n, that is (1 + x)n ≥ 1 + xn. Then

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + xn)(1 + x) = 1 + xn + x + xn+1 ≥ 1 + xn+1.

In the first inequality above we used the induction assumption and x > 0 (so 1 + x > 0), in the
second one we used that xn +x ≥ 0 for every n ≥ 1 and x > 0. This proves the induction step and,
thus, concludes the proof of the general formula. 2

Problems 2. Let a, b be non-zero real numbers. Using only definitions and axioms prove

a. (a−1)−1 = a; b. 1
a

= a−1; c. (ab)−1 = a−1b−1;

d. a > 0 if and only if a−1 > 0; e. a > 1 if and only if 0 < a−1 < 1.

Solution. Note that according to the definitions a. to check that x = −u one has to check that
u + x = 0; b. to check that y = u−1 one has to check that u · y = 1.
a. Denote u = a−1. We want to show that a = u−1. Applying A5 and the definition of a−1 we
obtain

u · a = a−1 · a = a · a−1 = 1.

By the definition, it shows that a = u−1 as needed.
b. Recall that by definition x

y
= x · y−1. Thus, using this definition and the definition of 1, we

observe
1

a
= 1 · a−1 = a−1.

c. Denote w = a · b. Applying A5 and A6 a few times and the definitions of 1, a−1, b−1, we obtain

w · (a−1 · b−1) = w · (b−1 · a−1) = (w · b−1) · a−1 = ((a · b) · b−1) · a−1

= (a · (b · b−1)) · a−1 = (a · 1) · a−1 = a · a−1 = 1

By the definition, it shows that a−1 · b−1 = w−1 as needed.
d.
1. First we show that a > 0 implies a−1 > 0. We argue by contradiction. Assume that a > 0 but
a−1 < 0. Then a−1 ≤ 0 and 0 ≤ a, so, by axiom O6 we observe that a−1 · a ≤ 0 · a. By A5, the
definition of a−1, and since a · 0 = 0, we obtain 1 ≤ 0, which contradicts to 1 > 0. It proves the
first part.
2. Now we show that a−1 > 0 implies a > 0 (the proof is essentially the same; please note that
instead of the prove given below, we could apply the first part of the statement to the real number
b = a−1 and then to say that a = b−1 which was proved in part a.). We argue by contradiction.
Assume that a−1 > 0 but a < 0. Then a ≤ 0 and 0 ≤ a−1, so, by axiom O6 we observe that
a · a−1 ≤ 0 · a−1. By A5 the definition of a−1, and since a−1 · 0 = 0, we obtain 1 ≤ 0, which
contradicts to 1 > 0. It proves the result.
e.
1. First we show that a > 1 implies 0 < a−1 < 1. Assume that a > 1. Since 1 > 0, we observe
by O3 that a > 0 (in fact O3 gives a ≥ 0, but, if a = 0 then 0 = a > 1). By the part d. we get
that a−1 > 0. Therefore it remains to prove that a−1 < 1. Assume by contradiction that a−1 ≥ 1.



Multiply this inequality by a non-negative number a. By O6 we obtain a−1 · a ≥ 1 · a. By A5 and
definitions it implies 1 ≥ a, which contradicts to our assumption. Therefore a−1 < 1.
2. Now we show that 0 < a−1 < 1 implies a > 1. Assume by contradiction that 0 < a−1 < 1
but a ≤ 1. By O6 multiply the latter inequality by a non-negative number a−1. We obtain
a · a−1 ≤ 1 · a−1. By definitions, 1 ≤ a−1, which contradicts our assumption. It proves the result. 2

Recall order axioms and some definitions
(for field axioms see the solutions of assignment 2.)

O1. ∀a ∈ R a ≤ a;
O2. ∀a, b ∈ R if a ≤ b and b ≤ a then a = b;
O3. ∀a, b, c ∈ R if a ≤ b and b ≤ c then a ≤ c;
O4. ∀a, b ∈ R a ≤ b or b ≤ a;
O5. ∀a, b, c ∈ R if a ≤ b then a + c ≤ b + c;
O6. ∀a, b, c ∈ R if a ≤ b and 0 ≤ c then ac ≤ bc.

Definitions. We denote a < b if a ≤ b and a 6= b. We write a ≥ b if b ≤ a. We write a > b if b < a.


