Solutions of Assignment # 3.

Problem 1. Using the induction principle prove that for every x > 0 and every $n \in \mathbb{N}$ one has $(1+x)^n \ge 1+x^n$.

Solution.

1 (base). If n=1 we have $(1+x)^1 \ge 1+x^1$, which is clearly true (actually we have an equality).

2 (step). Assume the formula holds for n, that is $(1+x)^n \ge 1+x^n$. Then

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+x^n)(1+x) = 1+x^n+x+x^{n+1} \ge 1+x^{n+1}.$$

In the first inequality above we used the induction assumption and x > 0 (so 1 + x > 0), in the second one we used that $x^n + x \ge 0$ for every $n \ge 1$ and x > 0. This proves the induction step and, thus, concludes the proof of the general formula.

Problems 2. Let a, b be non-zero real numbers. Using only definitions and axioms prove

a.
$$(a^{-1})^{-1} = a;$$

b.
$$\frac{1}{a} = a^{-1}$$
;

c.
$$(ab)^{-1} = a^{-1}b^{-1}$$
;

d. a > 0 if and only if $a^{-1} > 0$;

e.
$$a > 1$$
 if and only if $0 < a^{-1} < 1$.

Solution. Note that according to the definitions **a.** to check that x = -u one has to check that u + x = 0; **b.** to check that $y = u^{-1}$ one has to check that $u \cdot y = 1$.

a. Denote $u = a^{-1}$. We want to show that $a = u^{-1}$. Applying A5 and the definition of a^{-1} we obtain

$$u \cdot a = a^{-1} \cdot a = a \cdot a^{-1} = 1.$$

By the definition, it shows that $a = u^{-1}$ as needed.

b. Recall that by definition $\frac{x}{y} = x \cdot y^{-1}$. Thus, using this definition and the definition of 1, we observe

$$\frac{1}{a} = 1 \cdot a^{-1} = a^{-1}.$$

c. Denote $w = a \cdot b$. Applying A5 and A6 a few times and the definitions of 1, a^{-1} , b^{-1} , we obtain

$$\begin{split} w\cdot(a^{-1}\cdot b^{-1}) &= w\cdot(b^{-1}\cdot a^{-1}) = (w\cdot b^{-1})\cdot a^{-1} = ((a\cdot b)\cdot b^{-1})\cdot a^{-1} \\ &= (a\cdot (b\cdot b^{-1}))\cdot a^{-1} = (a\cdot 1)\cdot a^{-1} = a\cdot a^{-1} = 1 \end{split}$$

By the definition, it shows that $a^{-1} \cdot b^{-1} = w^{-1}$ as needed.

 \mathbf{d} .

1. First we show that a > 0 implies $a^{-1} > 0$. We argue by contradiction. Assume that a > 0 but $a^{-1} < 0$. Then $a^{-1} \le 0$ and $0 \le a$, so, by axiom O6 we observe that $a^{-1} \cdot a \le 0 \cdot a$. By A5, the definition of a^{-1} , and since $a \cdot 0 = 0$, we obtain $1 \le 0$, which contradicts to 1 > 0. It proves the first part.

2. Now we show that $a^{-1} > 0$ implies a > 0 (the proof is essentially the same; please note that instead of the prove given below, we could apply the first part of the statement to the real number $b = a^{-1}$ and then to say that $a = b^{-1}$ which was proved in part **a.**). We argue by contradiction. Assume that $a^{-1} > 0$ but a < 0. Then $a \le 0$ and $0 \le a^{-1}$, so, by axiom 06 we observe that $a \cdot a^{-1} \le 0 \cdot a^{-1}$. By A5 the definition of a^{-1} , and since $a^{-1} \cdot 0 = 0$, we obtain $1 \le 0$, which contradicts to 1 > 0. It proves the result.

e.

1. First we show that a > 1 implies $0 < a^{-1} < 1$. Assume that a > 1. Since 1 > 0, we observe by O3 that a > 0 (in fact O3 gives $a \ge 0$, but, if a = 0 then 0 = a > 1). By the part **d.** we get that $a^{-1} > 0$. Therefore it remains to prove that $a^{-1} < 1$. Assume by contradiction that $a^{-1} \ge 1$.

Multiply this inequality by a non-negative number a. By O6 we obtain $a^{-1} \cdot a \ge 1 \cdot a$. By A5 and definitions it implies $1 \ge a$, which contradicts to our assumption. Therefore $a^{-1} < 1$.

2. Now we show that $0 < a^{-1} < 1$ implies a > 1. Assume by contradiction that $0 < a^{-1} < 1$ but $a \le 1$. By O6 multiply the latter inequality by a non-negative number a^{-1} . We obtain $a \cdot a^{-1} \le 1 \cdot a^{-1}$. By definitions, $1 \le a^{-1}$, which contradicts our assumption. It proves the result. \square

Recall order axioms and some definitions

(for field axioms see the solutions of assignment 2.)

- **O1.** $\forall a \in \mathbb{R}$ $a \leq a$;
- **O2.** $\forall a, b \in \mathbb{R}$ if $a \leq b$ and $b \leq a$ then a = b;
- **O3.** $\forall a, b, c \in \mathbb{R}$ if $a \leq b$ and $b \leq c$ then $a \leq c$;
- **O4.** $\forall a, b \in \mathbb{R}$ $a \leq b \text{ or } b \leq a;$
- **O5.** $\forall a, b, c \in \mathbb{R}$ if $a \leq b$ then $a + c \leq b + c$;
- **O6.** $\forall a, b, c \in \mathbb{R}$ if $a \leq b$ and $0 \leq c$ then $ac \leq bc$.

Definitions. We denote a < b if $a \le b$ and $a \ne b$. We write $a \ge b$ if $b \le a$. We write a > b if b < a.