
Solutions of Assignment # 2.

Problem 1. Using the induction principle prove that
a. for every integer n ≥ 1 one has

13 + 23 + 33 + ... + n3 =

(
n(n + 1)

2

)2

;

b. 8n − 3n is divisible by 5 for every integer n ≥ 1;
c. for every integer n ≥ 2 one has

1 · 3 · 5 · ... · (2n + 1) < n2n.

Solution.
a. 1 (base). If n = 1 we have 13 = (1 · 2/2)2, which is true (1 = 1).
2 (step). Assume the formula holds for n. Denote m = n + 1. Then, using induction assumption
we obtain,

13 + 23 + 33 + ... + m3 = (13 + 23 + 33 + ... + n3) + (n + 1)3 =

(
n(n + 1)

2

)2

+ (n + 1)3

=
(n + 1)2

4

(
n2 + 4(n + 1)

)
=

(n + 1)2

4
(n + 2)2 =

(
m(m + 1)

2

)2

.

This proves the induction step and, thus, concludes the proof of the formula in the general case.

b. 1 (base). If n = 1 we have 81 − 31 = 5, which is divisible by 5.
2 (step). Assume that 8n − 3n is divisible by 5, that is 8n − 3n = 5k for some (positive) integer k.
Then 8n = 5k + 3n. Thus, for n + 1, we have

8n+1 − 3n+1 = 8 · 8n − 3 · 3n = 8(5k + 3n)− 3 · 3n = 8 · 5k + 5 · 3n = 5(8k + 3n).

Since 8k + 3n is integer, we obtain that 8n+1 − 3n+1 is divisible by 5, i.e. we proved the induction
step. Thus we proved the statement.

c. 1 (base). If n = 2 then 2n + 1 = 5 and we have

1 · 3 · 5 · ... · (2n + 1) = 1 · 3 · 5 = 15,

while n2n = n2n = 24 = 16. Therefore the inequality is true for n = 2.
2 (step). Assume that 1 · 3 · 5 · ... · (2n + 1) < n2n and denote m = (n + 1). Then, by assumption,

1 · 3 · 5 · ... · (2m + 1) = 1 · 3 · 5 · ... · (2n + 1) · (2n + 3) < n2n(2n + 3) ≤ (n + 1)2n(2n + 3)

and m2m = (n + 1)2n+2 = (n + 1)2n(n2 + 2n + 1). Thus, in order to prove,

1 · 3 · 5 · ... · (2m + 1) < m2m,

it is enough to prove
2n + 3 ≤ n2 + 2n + 1.

The latter is equivalent to
2 ≤ n2,



which is true for every n ≥ 2. It completes the induction step and, thus, the inequality is proved.
2

Problems 2. Using only definitions and axioms A1 – A4 prove that
a. −0 = 0; b. 0− 1 = −1

Solution. Recall that, by the definition of the inverse element, in order to prove that b = −x it
is enough to show that x + b = 0.
a. In this case, x = b = 0. By axiom A3 we have 0 + 0 = 0, hence 0 = −0.
b. In this case x = 1 and b = 0− 1. We have

1 + (0− 1) = 1 + (0 + (−1)) = 1 + ((−1) + 0) = (1 + (−1)) + 0 = 0 + 0 = 0,

where in the first equality we used the definition of the operation “−”, in the second one we used
axiom A1, in the third one we used axiom A2, in the fourth one we used the definition of the inverse
element, and in the fifth equality axiom A3 was used. It proves the desired result. 2

Problem 3. Using only definitions and axioms A1 – A9 prove that
a. for every a, b ∈ R one has (−a)b = −(ab);
b. for every a ∈ R one has (−1)a = −a.
(In this problem you may also use the fact saying that x0 = 0 for every x ∈ R).

Solution. Recall again that in order to prove that y = −x it is enough to show that x + y = 0.
a. Here x = ab, y = (−a)b. We have

ab + (−a)b = ba + b(−a) = b(a + (−a)) = b · 0 = 0,

where in the first equality we used axiom A5, in the second one we used axiom A9, in the third one
we used the definition of the inverse element, and in the fourth equality we used fact, proved in the
class.
b. Way 1. Here x = a and y = (−1)a. We have

a + (−1)a = a · 1 + a(−1) = a(1 + (−1)) = a · 0 = 0,

where in the first equality we used axioms A7 and A5, in the second one we used axiom A9, in the
third one we used the definition of the inverse element, and in the fourth equality we used fact,
proved in the class.
b. Way 2. Note that in the problem 3a we proved (−a)b = −(ab) for every a, b ∈ R. Applying
that with a = 1 we observe that (−1)b = −(1 · b) for every b ∈ R. Since by axioms A7 and A5
1 · b = b · 1 = b, we obtain (−1)b = −b for every b ∈ R, which proves the result. 2

Recall axioms (and Fact 4).

A1. ∀a, b ∈ R a + b = b + a; A2. ∀a, b, c ∈ R (a + b) + c = a + (b + c);
A3. ∃θ ∈ R a + θ = a; A4. ∀a ∈ R ∃x ∈ R a + x = θ;
A5. ∀a, b ∈ R a · b = b · a; A6. ∀a, b, c ∈ R (a · b) · c = a · (b · c);
A7. ∃z ∈ R a · z = a; A8. ∀a ∈ R \ {θ} ∃y ∈ R a · y = z;
A9. ∀a, b, c ∈ R a · (b + c) = a · b + a · c.
Fact 4. ∀a ∈ R a · 0 = 0.

Definitions. The unique element θ given by A3 (and used in A4) is denoted by 0. Given a, the
unique element x given by A4 is denoted by −a. The unique element z given by A7 (and used in
A8) is denoted by 1. Given a 6= 0, the unique element y given by A8 is denoted by a−1. Note that
according to this definition a. to check that x = −a one has to check that a + x = 0; b. to check
that y = a−1 one has to check that a · y = 1.


