Solutions of Assignment # 10.

Problem 1. Let £,/ € N be such that £ > ¢ > 2. Find the following limits.

k k+¢ k I
1 N
im nr , b. lim o Antn , c. lim nVlﬁ
n—00 1077,6 + 5n2 +n n—00 on n—00

a.

Solution.
a. By theorem proved in class we have
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b. By theorems proved in class we have
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It implies that
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(this fact can be proved using the same lines as for (x), we provide the proof below. Note here that
the sequence in (k*) is not a subsequence of the sequence in (x)).
Therefore, by one of the properties of limit (which was a homework problem) we obtain
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Proof of (xx). Denote the sequence in (xx) by {x,}°°,. First we show that this sequence is
decreasing starting from n = 27. Note
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By (x * %) the latter inequality is satisfied if
(1+1/n)" <n'/3.
Since, as we proved in class, (14 1/n)" < 3, it is enough to have
3% <n.

Thus the sequence {z,}2,, is decreasing and bounded (by 27 above and by 1 below). Therefore
it is convergent, which implies that {x,}%, is convergent. Now note that the sequence {y,}>°,
where y,, = n'/" is a subsequence of {z,}5,. In class we proved that y, — 1 as n — oo. It implies
that z,, — 1 as n — oo. O



Problem 2. Find the domain and sketch the graph of the following functions

x, if x =1/n for some n € N,

a. |e=1=le+l], b. {O, otherwise,

C. r d. v1—22

Solution.  For graphs please see the attached file.

a. Let f(x) = |x — 1| — |z + 1]. Clearly domf = R, as the formula has sense for every real x. Now,
by the definition of absolute value we have

i.fore>1 flz)=(x—-1)—(r+1)=-2,

ii. for -1<z<1 fz)=—(x—1)—(x+1)=—2x,

iii. fore< -1  fla)=—(—-1)+(z+1)=2.

b. Again, the formula has sense for every real =, so the domain is R.

c. Here the formula has sense for every nonzero real number, so the domain is R \ {0}. Note that
for all nonzero x we have z*/z? = z2.

d. Since square root is defined for non-negative numbers only the domain here is the set of all x
such that 1 — 22 > 0, which is equivalent to —1 < z < 1. O

Answer. a. R, b. R, c. R\{0}, d. [-1,1].

Problem 3.  Does the limit of function f at the point a exist? If YES, find the limit and prove
your answer using (¢/J)-definition of the limit. If NO, prove it.

a. a=09, f(z)=r, b. a=1, f(z)=V1-— a2

2z, if x> 2,
c. a=2, f(z)=<¢ 5, if 2 =2,
6—x, if x<2,

. _ PN
d. a=-1, f(x):{ yxg" if > -1, e. a=0, f(x):{ﬁ’ if >0,

x®, if r < -1, 1—z, if 2z <0.

Solution.

a. We show that the limit exists and equal to 3. First note that (7,11) C domf = [0, 00), in other
words our function is defined “near” a. Now fix an arbitrary ¢ > 0. Choose § = min{1,e} > 0.
Assume that |z — 9] < §. Then, since § < 11 we have x € domf and

|z — 9| J

- <e&.

|f(95)—3|:|\/_—3|:m§3

Thus, by the definition,
lir% f(z) =3.

b. Note that, as we found in Problem 2, domf = [—1,1]. In particular, for x > 1 the function is
not defined. Thus, there is no v such that (1—~,1+7v)\{—1} C domf = [—1, 1]. By the definition,
in such a case the limit does not exist.
c. We show that the limit exists and equal to 4. Note that the domain of f is R, so the first
condition in the definition of the limit (that f is defined “near” a) is satisfied. Now fix an arbitrary
e. Choose 6 = ¢/2. Assume that 0 < |z — 2| < §. Then we have z € domf and
if 2 <2 <249 then

1f(z) —4] =22 — 4] = 2|z — 2| < 20 =¢;



if 2—6 <z <2 then
|f(x) —4|=](6—2)—4]=2—z|=|z—-2|<d <e.

Thus, by the definition,
lim f(z) = 4.

T—2
d. We show that the limit exists and equal to 1. Note that the domain of f is R\ {—1}, so the
first condition in the definition of the limit (that f is defined “near” a) is satisfied. Now fix an
arbitrary €. Choose § = min{1,¢/3}. Assume that 0 < |z — (=1)| = |x + 1| < §. Then we have
x € domf and moreover, x < 0 (because 0 < 1), which implies |z| = —z. Hence,
if =1 <2 < —1+4 ¢ then

[fl@) =1 =llz] -l =]z -1 =]e+1][ <5 <e/3 <¢;
if -1-d<ax<—1then|z|]<1+4+§<2and
f(x) =1 =2 -1 =z -1 |z + 1| < §(a| + 1) <35 < &

Thus, by the definition,
lim f(z) = 1.
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e. We show that limit does not exists.
Way 1. In (¢/6)-language. Fix an arbitrary real number L. We show that L can not serve as a
limit. We have to prove that there is g > 0 such that for every § > 0 one can find xy satisfying
0 < |zg—a|l=l|zxo| <dand |f(xg) — L| > o.

We choose €y = 1/4 and consider two cases.
Case 1. L > 1/2.

Given an arbitrary 6 > 0 we choose zp = min{1/16,6/2}. Then
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Case 2. L <1/2.
Given an arbitrary § > 0 we choose 1 = —9/2. Then
0< |z =—21 <9 and |f(xy) - Ll=1—xy—L|=1—21—L>1—-L>1/2>¢,.

It completes the proof.

Way 2. Using language of sequences and uniqueness of the limit. Assume that limit exists
and denote it by L. Take z, = 1/n > 0 (for all n > 1). Then for every n we have x,, # 0 and

1
Az, =0 and o lm f(z) = lim —2 =0

Therefore, by the definition of the limit, L = 0. On the other hand, consider y,, = —1/n < 0. Then
for every n we have y, # 0 and

1
lim y, =0 and lim f(x,)= lim (1 + —) = 1.
n
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Therefore, by the definition of the limit, L = 1. Since 1 # 0, we obtain a contradiction. It implies
that limit does not exists. |

Answer.
a. Yes, the limitis 3; b. No; c¢. Yes, the limit is 4; d. VYes, the limitis 1; e. No.



