Problem 1. Let $A = \{1, 3\}$ and $B = \{-1, 1\}$. Determine if the following statement true or false. Provide explanations. Write the negation.

a.
$$\forall x \in A \ \exists y \in B \quad x + y = 2;$$

b.
$$\exists x \in A \ \forall y \in B \quad x + y \le 2.$$

Solution.

- **a.** True. Indeed, if x = 1 we take $y = 1 \in B$, if x = 3 we take $y = -1 \in B$. In both cases x + y = 2, which proves that the statement is true. The negation is $\exists x \in A \ \forall y \in B \quad x + y \neq 2$.
- **b.** True. Take $x = 1 \in A$. Then if $y = -1 \in B$ we have $x + y = 0 \le 2$, if $y = 1 \in B$ we have $x + y = 2 \le 2$. It shows that with $x = 1 \in A$ we have $\forall y \in B$ $x + y \le 2$, which proves the result. The negation is $\forall x \in A \ \exists y \in B \ x + y > 2$.

Problem 2. Using the induction principle prove that for every x > 0 and every $n \in \mathbb{N}$ one has

$$(1+x)^n \ge 1 + nx.$$

Solution.

- **1** (base). If n = 1 we have $(1+x)^1 \ge 1+1\cdot x$, which is clearly true (actually we have an equality).
- **2** (step). Assume the formula holds for n, that is $(1+x)^n \ge 1 + nx$. Then

$$(1+x)^{n+1} = (1+x)^n(1+x) \ge (1+nx)(1+x) = 1+nx+x+nx^2 \ge 1+(n+1)x.$$

In the first inequality above we used the induction assumption and x > 0 (so 1 + x > 0), in the second one we used that $nx^2 \ge 0$ for every $n \ge 1$ and x. This proves the induction step and, thus, concludes the proof of the general formula.