Answers to drill problems 2.

Problem 1. Let A, B be sets. Prove that $A\Delta B = (A \cup B) \setminus (A \cap B)$.

Remark. Note that by the definition $A\Delta B = (A \setminus B) \cup (B \setminus A)$. Thus you have to prove that

$$\left((A \setminus B) \cup (B \setminus A) \right) \subset \left((A \cup B) \setminus (A \cap B) \right) \quad \text{and} \quad \left((A \cup B) \setminus (A \cap B) \right) \subset \left((A \setminus B) \cup (B \setminus A) \right).$$

So you have to start with an arbitrary $x \in (A \setminus B) \cup (B \setminus A)$ and show that $x \in (A \cup B) \setminus (A \cap B)$. Then you should take an arbitrary $x \in (A \cup B) \setminus (A \cap B)$ and show that $x \in (A \setminus B) \cup (B \setminus A)$

Problem 2. Is the statement below true or false? Write its negation. Is the negation true or false? Why?

a.	$\forall x \in \mathbb{Z} \; \exists y \in \mathbb{N}$	$y = x^2$,	b. $\forall x \in \mathbb{Z} \exists y \in \mathbb{N} y = 5 - x^2$,
c.	$\forall x \in \mathbb{Z} \ \exists y \in \mathbb{N}$	y = 3,	d. $\forall x \in \mathbb{Z} \exists y \in \mathbb{N} x = 0,$
e.	$\forall x \in \mathbb{N} \ \exists y \in \mathbb{Z}$	$y^2 - x = 0,$	f. $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} y + x \neq 0,$
g.	$\exists x \in \mathbb{N} \ \forall y \in \mathbb{Q}$	$x + y \in \mathbb{N},$	h. $\exists x \in \mathbb{N} \ \forall y \in \mathbb{Q} x + y \neq 0,$
i.	$\exists x \in \mathbb{N} \ \forall y \in \mathbb{Q}$	x = 10,	j. $\exists x \in \mathbb{N} \ \forall y \in \mathbb{Q} y = 5,$
k.	$\exists x \in \mathbb{N} \ \forall y \in \mathbb{Z}$	$y = x^2$,	1. $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{Z} x + y = 0.$

Answer.

a. False (take x = 0). The negation (which is true) is $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{N} \quad y \neq x^2$, **b.** False (take x = 5). The negation (which is true) is $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{N} \quad y \neq 5 - x^2$,

- **b.** False (take x = 5). The negation (which is true) is $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{N}$ $y \neq 5 x^2$,
- **c.** True (take y = 3). The negation (which is false) is $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{N} \ y \neq 3$,
- **d.** False (take x = 2). The negation (which is true) is $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{N} \quad x \neq 0$,
- **e.** False (take x = 2). The negation (which is true) is $\exists x \in \mathbb{N} \ \forall y \in \mathbb{Z} \quad y^2 x \neq 0$,
- **f.** True (take y = 1 x). The negation (which is false) is $\exists x \in \mathbb{Z} \ \forall y \in \mathbb{Z} \ y + x = 0$,
- **g.** False (take y = 1/2). The negation (which is true) is $\forall x \in \mathbb{N} \exists y \in \mathbb{Q} \quad x + y \notin \mathbb{N}$,
- **h.** False (take y = -x). The negation (which is true) is $\forall x \in \mathbb{N} \exists y \in \mathbb{Q} \quad x + y = 0$,
- **i.** True (take x = 10). The negation (which is false) is $\forall x \in \mathbb{N} \exists y \in \mathbb{Q} \quad x \neq 10$,
- **j.** False (take y = 2). The negation (which is true) is $\forall x \in \mathbb{N} \exists y \in \mathbb{Q} \quad y \neq 5$,
- **k.** False (take $y = x^2 + 1$). The negation (which is true) is $\forall x \in \mathbb{N} \exists y \in \mathbb{Z} \quad y \neq x^2$,
- **1.** False (take y = 1 x). The negation (which is true) is $\forall x \in \mathbb{Z} \exists y \in \mathbb{Z} \quad x + y \neq 0$.

Remark. Note that **c** says $\exists y \in \mathbb{N}$ y = 3; **d** says $\forall x \in \mathbb{Z}$ x = 0; **i** says $\exists x \in \mathbb{N}$ x = 10; **j** says $\forall y \in \mathbb{Q}$ y = 5.