Assignment # 3. Due Oct. 2, 13:00

Problem 1. Using the induction principle prove that for every x > 0 and every $n \in \mathbb{N}$ one has

$$(1+x)^n \ge 1+x^n.$$

Problem 2. Let *a*, *b* be non-zero real numbers. Prove the following statements using only definitions and axioms (you may use also that 1 > 0 and that for every *x* one has $x \cdot 0 = 0$).

a. $(a^{-1})^{-1} = a;$ **b.** $\frac{1}{a} = a^{-1};$ **c.** $(ab)^{-1} = a^{-1}b^{-1};$ **d.** a > 0 if and only if $a^{-1} > 0;$ **e.** a > 1 if and only if $0 < a^{-1} < 1.$

Recall order axioms

(for field axioms see the solutions of assignment 2.)