The extension of the finite-dimensional version
of Krivine’s theorem to quasi-normed spaces.
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Recently, a number of results of the Local Theory have been extended to
the quasi-normed spaces. There are several works ([Kall], [Kal2], [D], [GL],
[KT], [GK], [BBP1], [BBP2|, [M2]) where such results as Dvoretzky-Rogers
lemma ([DvR]), Dvoretzky theorem ([Dv1], [Dv2]), Milman’s subspace-quotient
theorem ([M1]), Krivine’s theorem ([Kr|), Pisier’s abstract version of Gro-
tendick’s theorem ([P1], [P2]), Gluskin’s theorem on Minkowski compactum
([G]), Milman’s reverse Brunn-Minkowski inequality ([M3]), and Milman’s
isomorphic regularization theorem ([M4]) are extended to quasi-normed spaces
after they were established for normed spaces. It is somewhat surprising since
the first proofs of these facts substantially used convexity and duality.

In [AM2] D. Amir and V.D. Milman proved the local version of Krivine’s
theorem (see also [Gow], [MS]). They studied quantitative estimates appear-
ing in this theorem. We extend their result to the ¢- and quasi-normed
spaces.

Recall that the quasi-norm on a real vector space X isamap ||| : X —
R™ such that
D flz]| >0 Va0,

2) ltz]| = [t l=l]  VtE€R, z € X,

3) 3C >1 such that Yo,y € X |z 4yl < C(|lz|| + |yl

If 3) is substituted by

3a) Ve,y € X |lz+yl|? < [|z||?+||y||? for some fixed ¢ € (0,1]

then || - || is called a g-norm on X. Note that 1-norm is the usual norm. Tt
is obvious that every ¢g-norm is a quasi-norm with C' = 2%/¢-1. However, not
every quasi-norm is g-norm for some ¢q. Moreover, it is even not necessary
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continuous. It can be shown by the following simple example. Let f be a
positive function on the Euclidean sphere S™~! defined by

o) = { || for x € A,

2|z|  otherwise.

Here A is a subset of S"~! such that both A and S" '\ A are dense in S"!.
Denote ||z|| = |z|f(z/|x|). Because f is not continuous it is clear that || - ||
is not g-norm for any ¢ though it is the quasi-norm.

The next lemma is Aoki-Rolewicz Theorem ([KPR], [R], see also [K],
p.47).

Lemma 1 Let ||-|| be a quasi-norm with the constant C' in the quasi-triangle
inequality. Then there exists a g-norm || - || for which

[zlly < flzfl < 2C ]l
with q satisfying 2Y/91 = C. This q-norm can be defined as follows
n 1/q n
|||, = inf (ZHleq) n>0, =) x; .
i=1 =1

We refer to [KPR] for further properties of the quasi- and g-norms.
Next, we prove the following theorem.

Theorem 1 Let {e;}} be a unit vector basis in R", || - ||, be a l,-norm on
R™, ie. |0, aell, = (5 |aiP), for 0 < p < oo. Let || - || be a g-norm
on R"™ such that

Crtllzll, < lloll < Collll, (+)

for every x € R™. Then for every e > 0 and C = C,Cs there exists a block
sequence Uy, U, ..., Uy, of €1, es, ..., e, which satisfies

m 1/p m m 1/p
a-a(Xlak) < |[Sau] < 0eo(Sar) e

for all ay,ag, ..., an and m > C(g,p,q) (n/logn)”, where

(673)) o
v=——/¥9¥—.— for p<1l and v=———, for p>1;
€0+ p+ agg for p 2e0 + 1 for p=

q5/2 )p/q

Q= mln{p7 Q}v €o = <1—|—C’112q/p



Remark 1. If p > 1 in this theorem, then we have the well-known finite-
dimensional version of Krivine’s theorem with some modifications concerning
change of the usual norm to the g-norm. In this case for small enough ¢ we

get g9 ~ (%)p/q and v ~ gg.

The case p < 1 is more interesting. We get an extension of the finite-
dimensional version of Krivine’s theorem. To provide an intuition for the
behavior of the constant in the theorem we point out that for small enough

p and ¢ with p = ¢ we can take g9 ~ &5 and v = &.

Remark 2. By Lemma 1 in the case of quasi-norm with the constant Cj
the inequality (xx) is substituted with

(1-e) (iu)/ <

Due to the example above, we can not remove the constant Cj in this in-
equality.
The proof of the theorem consists of two lemmas.

m
D aits

=1

< 201+ )G (imiv’)W.

=1

Lemma 2 For every n > 0 there exists a constant C(n) > 0 such that
if || - || is a g-norm on R"™ satisfying () then there exists a block sequence
Y1, Y2, -y Yk Of €1, €2, ..., €, which is (1+n)-symmetric and k > C(n, q, p) ==

logn*
Lemma 3 If y1,ys2, ..., yr is a 1-symmetric sequence in a normed space sat-
1sfying

k
Z QilY;

=1

CyHall, < < Collall,

for all a = (ay,as,...,a;) € R* then for every e > 0 there exists a block
SeqUeNce Ui, Us, ..., Um Of Y1, Yo, ..., Yr such that

(L =e)lall, < Zazuz (1 +¢)llallp
for all a = (a1, ay, ..., ay) € R™, where m > C(p, q)e?/ k¥, v = 807‘;23%0, for
p/q
p<landv=; +1,f07"p>1 a =min{p,q}, €y = (H-C‘Zﬁ) )



At first, D. Amir and V.D. Milman ([AM2], see also [MS]) proved Lemma 2
for ¢ = 1, p > 1 with the estimate & > C(n, ¢, p)n'/3. Their proof can be
modified to obtain result for 0 < p < oo, ¢ < 1. Afterwards, W.T. Gowers
([Gow]) showed that the estimate of k can be improved to k > C(n, ¢, p)n/Inn.
In fact, he gave two different, though similar, proofs for cases p = 1 and p > 1.
The proof given for case p = 1 strongly used the convexity of the norm and
the fact that p is equal to 1. However, the method used for p > 1 actually
works for every 0 < p < oo and even for ¢g-norms. Let us recall the idea of
W.T. Gowers. First we will introduce some definition.

Let © be the group {—1,1}" x S,,, where S,, is the permutation group.
Let ¥ be the group {—1,1}* x Sj. For

n k
b=> bie; € R", a:ZaieiERk, (e,m)€Q, (n,0)eV

i=1 i=1

denote .
ber =D _EibiCn(y,  Qyo = D MiGiCos) -
1=1 i=1
Let h-k=mn. Fori <k, j <h put

€ij = €(i—1)h+j» Eij = E(i—Dh4js Tij = 7((¢ — 1)h + j).
Define an action of ¥ on €2 by

\I[”]U((gaﬂ—)) = (5177T1)7 where 575' = Thi€o(i)j> ﬂ-z‘lj = To(i)j-

For any (g,7) € € define the operator

k k h
S : R*— R" by ®. (z) — S e,
=1

i=1j=1
For every a € R* by M, denote the median of ®. (a) taken over Q. Finally,
let A={aely: |lall, <1,a1>ay>..>a; >0}

The following claim, which W.T. Gowers proved for case p > 1 and ¢ = 1,
is the main step in the proof of Lemma 2.

Claim 1 Let ||| be a g-norm on R" satisfying |||, < ||z|| < B||z||,. There
is a constant Coy = C(p, q,0, B) such that given A > 0 for every a € A

1
Proba { 3(1,0) + | [@n(ane) | = M2 M > Sodllal b7 | < 1/N

with k = C Mggn and N = k.



The proof of this claim can be equally well applied for all 0 < p < oo and
0 < g < 1. The only change that we have to do is to replace the triangle
inequality

[zl =Nyl < llz =yl by [l =yl < Jle =yl

The following two claims are technical and can be proved using ideas of
[Gow] with small changes, connected with replacing p > 1 by p < 1 and the
norm by g-norm.

Claim 2 Let 0 < p < oo and 6 > 0. There exist a constant X\, depending on
p and 6 only, such that for every integer k the set A contains a 6-net K of
cardinality k™.

Claim 3 Let || - || be a g-norm on R" satisfying ||z|, < ||z|| < Bl|z|,. If
there is (e,m) € Q such that for every a in some d-net K of A

[ ®er(@no) | = | @er (@) |7V < 8lall,n17
for every (n,o), (n,01) € VU then the block basis
{(I)m(ei) ?:1
of (R*,||-]]) is (1+6 (Bé)q)l/q-symmetm'c.

These three claims imply Lemma 2 in the standard way (see [Gow] for
the details).

Proof of Lemma 3:
Our method of proof is close to the method used in [AM1], but our notation
follows that of [MS] (ch. 10).

First, we will give the Krivine’s construction of block basis. Let a and N
be some integers which will be specified later. Let us introduce some set of
numbers {\;};. We will say that set

{Bj,i}jEJ,iEI

(if card I =1 then we have only one index j) is {\;}-set if
1) Bj; C {1,...,n} for every j € J,i € I,
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2) B;; are mutually disjoint,
3) card Bj; = \; for every j € J, i € I.
Let us fix some {[p/]}-set

{Aj,s}OSjSN—l,lgsgm

for p=1+1/a.
For0 <j <N —1,1<s <m denote

YQ,S = Z Y;

i€A;
and define
Z p /pY
Clearly, ||z1]| = ||z2]| = ... = ||zm|| The integer m will be defined from
_ a+1\Y
Z D) e mp (p—1)1=ma( - )

Finally, we define the block sequence {us}7 ; by

us = 25/ ||2s]|-

Now, as in [MS], we will establish the necessary estimates.

Fix NNM € {T+1,T+2,...,m} and t, € {0,...,T} for s € {1, ...,

such that
M
Spt=14mn n=1
s=1
Then
M M N-1 '
dop =30 % PN =
s=1 s=1 j=0
N—1+T N N—-1+T N
_ Z ,0( —i)/p Z Z g = Z p( —i)/p Z Ui
i=0 s<M, j<SN—1,j+ts=i 1€A; i=0 1€B;

for some {a;}-set {B;}5'", where

a; = 3 [P, 0<i<N—-1+T.

s<M, jSN—1, j+ts=i

m}



Therefore, we can choose a vector z which has the same structure as z,
(ie. 2z = ZN o PNTIIP Y4y for some {[p7]}-set {A;}o<j<n—1) such that
the dlfference A is

N—-14+T

M N-1
A:Zp*ts/pzs_zzzp /pzyl+ Z p )/pzyl
s=1 s=1

IeC; e
for some {b;}-set {C;} N7, where

b I[P —a]] for0<j<N-1,
T a4 for N<j<N-1+T.

Using technique of [MS] (pp. 66-67) we obtain
IA| < Cop™NP(AT + Nin|+ NMp~ """ and  ||z]| > (1/CL)p™P(N/2)V/ .

Hence . .
- —ts /Pu —1 % —ts/p,, _ _°
P Us
=7 e |2 ||
A\ 8T _r\ VP
el } (Clcz)q(+2|n| +2Mp >
2] N
Thus g
—ts/pus -1 < Cq(1250)q/p’

provided T' < Neg, |n] <eo, Mp™T <mp=T < gy, for some &.
Assume T = [Negg.

CASE 1. p< 1.

Let Y7 |ag/P = 1 and as = |a,]. Let @ = min{p,q} and § = g(l)/p/ml/a
Take 3, = p~*/P or B, =0, t, € {0,1,..., T} such that |a, — 3| < for every
s. It is possible if p~7/? < § and 1 — p~'/P < §. Since p < 1 it is enough to
take a such that it satisfies following the inequalities

[Neo
R T N
a+1 mp/e pla+1)

Take a = {i} = { 11//:] Thus 6 >

op

St =[S -] < [Slator -1 <

7

a+1)



‘Zap+(5p ‘—5pm<50,

q

Us Us — Ag ‘ Us S

|

m

q
q Zus

s=1

< §fm < 58“’.

Hence
< elP(1 4+ C11297)

‘ Z SR

if mPle < eg(He) Vel and ma(H2)V < k, when a = [mll//z}
peg

such that (7%-)V< is of the order go/m?/* . Then

ml/e [ pla 1/e0 ml+1/a+p/(as0)
M = T e R
DPEy <o g0 Py’

Thus, since 1/a > max{1/p,1/q},

agqQ

m ~ & (pk) 50+P+a50 ~ gokeotrtaco

and for g; = ¢¥/” (1 - cq12q/p>

(1 -V i@l < |30 | <

holds. For e; small enough (7 < 29 — 1) we obtain 1 — &, /q <
and 14 2¢;/q > (1 +¢,)"4. Take € = 2¢,/q, then

q&?/2 p/q
g = B ————
0 1+ Ca124/p

m > C(p,q)e” ki

(L+e)"" I,

and

CASE 2. p> 1.

We use the same idea. Let Y7, |as)? = 1 and as = |agl.
£0/(CPm). Take B, = p~*/P or B, =0, t, € {0,1,...,T} such that |a? — 37|

8

Choose N

(1 — 61)1/q

Let §

IA I



§ for every s. It is possible if p~7 < §and 1—p~! < §. These two conditions
are met if e
€0 1
( a4 > <y = =0 and 0 > )
a+1 CPm a+1

Take a = [H = [cpm} Thus

St =1 < a0 -1 = om < =

Since
m m N—j[ ] 1/p
Zus < C1CQM < 0, (mpr[pj]) — COml/P
= 121l [EAlFs
and
1B — as] < |87 —a?|'P < 57,
we obtain
q
i Us Ug - as|us S
< 5q/pH Zuqu < §UPCImMalP < gg/P.
s=1
Hence .
‘ us| — 1] < VP(1+ C11297)
if m < g ()Nl and ma(t2)N <k, when a = [cpm} Choose N such

£o.
cr
that (7$;)"% is of the order &¢/(C?m). Then

o CPm, (Cpm>1/so _ <Cfp>1+1/50 e g
€0 €0 €0

Thus . .
0,50
> —— Je2eg+1
m o k2e0

and for & = e¥” (1 + Cq12‘1/p)

(1= [l(@)ll, < |3 asu,

9

(L+ )" [l(@s)]




holds. For &, small enough (¢, < 29 — 1) we obtain 1 — &;/q < (1 — &;)"/9
and 1+ 221/q > (1 +¢,)Y/%. Take £ = 2¢,/q, then

q5/2 p/q
0= | —Fs——77
0 1+ Ca124/p

m > C(p, q)gp/Qk72sz()-§-1 )

and

O
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