
The extension of the finite-dimensional version
of Krivine’s theorem to quasi-normed spaces.

A.E. Litvak∗

Recently, a number of results of the Local Theory have been extended to
the quasi-normed spaces. There are several works ([Kal1], [Kal2], [D], [GL],
[KT], [GK], [BBP1], [BBP2], [M2]) where such results as Dvoretzky-Rogers
lemma ([DvR]), Dvoretzky theorem ([Dv1], [Dv2]), Milman’s subspace-quotient
theorem ([M1]), Krivine’s theorem ([Kr]), Pisier’s abstract version of Gro-
tendick’s theorem ([P1], [P2]), Gluskin’s theorem on Minkowski compactum
([G]), Milman’s reverse Brunn-Minkowski inequality ([M3]), and Milman’s
isomorphic regularization theorem ([M4]) are extended to quasi-normed spaces
after they were established for normed spaces. It is somewhat surprising since
the first proofs of these facts substantially used convexity and duality.

In [AM2] D. Amir and V.D. Milman proved the local version of Krivine’s
theorem (see also [Gow], [MS]). They studied quantitative estimates appear-
ing in this theorem. We extend their result to the q- and quasi-normed
spaces.

Recall that the quasi-norm on a real vector space X is a map ‖·‖ : X −→
IR + such that
1) ‖x‖ > 0 ∀x 6= 0,
2) ‖tx‖ = |t| ‖x‖ ∀t ∈ R, x ∈ X,
3) ∃C ≥ 1 such that ∀x, y ∈ X ‖x + y‖ ≤ C(‖x‖+ ‖y‖).
If 3) is substituted by
3a) ∀x, y ∈ X ‖x + y‖q ≤ ‖x‖q + ‖y‖q for some fixed q ∈ (0, 1]
then ‖ · ‖ is called a q-norm on X. Note that 1-norm is the usual norm. It
is obvious that every q-norm is a quasi-norm with C = 21/q−1. However, not
every quasi-norm is q-norm for some q. Moreover, it is even not necessary
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continuous. It can be shown by the following simple example. Let f be a
positive function on the Euclidean sphere Sn−1 defined by

f(x) =

{
|x| for x ∈ A,
2|x| otherwise.

Here A is a subset of Sn−1 such that both A and Sn−1 \A are dense in Sn−1.
Denote ‖x‖ = |x|f(x/|x|). Because f is not continuous it is clear that ‖ · ‖
is not q-norm for any q though it is the quasi-norm.

The next lemma is Aoki-Rolewicz Theorem ([KPR], [R], see also [K],
p.47).

Lemma 1 Let ‖·‖ be a quasi-norm with the constant C in the quasi-triangle
inequality. Then there exists a q-norm ‖ · ‖ for which

‖x‖q ≤ ‖x‖ ≤ 2C‖x‖q

with q satisfying 21/q−1 = C. This q-norm can be defined as follows

‖x‖q = inf


(

n∑
i=1

||xi||q
)1/q

: n > 0, x =
n∑

i=1

xi

 .

We refer to [KPR] for further properties of the quasi- and q-norms.
Next, we prove the following theorem.

Theorem 1 Let {ei}n
1 be a unit vector basis in IR n, ‖ · ‖p be a lp-norm on

IR n, i.e. ‖∑n
i=1 aiei‖p = (

∑
i |ai|p)1/p, for 0 < p < ∞. Let ‖ · ‖ be a q-norm

on IR n such that
C−1

1 ‖x‖p ≤ ‖x‖ ≤ C2‖x‖p (∗)
for every x ∈ IR n. Then for every ε > 0 and C = C1C2 there exists a block
sequence u1, u2, ..., um of e1, e2, ..., en which satisfies

(1− ε)

(
m∑

i=1

|ai|p
)1/p

≤
∥∥∥∥∥

m∑
i=1

aiui

∥∥∥∥∥ ≤ (1 + ε)

(
m∑

i=1

|ai|p
)1/p

(∗∗)

for all a1, a2, ..., am and m ≥ C(ε, p, q) (n/ log n)ν, where

ν =
αε0

ε0 + p + αε0

, for p < 1 and ν =
ε0

2ε0 + 1
, for p ≥ 1 ;

α = min{p, q} , ε0 =

(
qε/2

1 + Cq12q/p

)p/q

.
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Remark 1. If p ≥ 1 in this theorem, then we have the well-known finite-
dimensional version of Krivine’s theorem with some modifications concerning
change of the usual norm to the q-norm. In this case for small enough q we

get ε0 ≈
(

qε
4

)p/q
and ν ≈ ε0.

The case p < 1 is more interesting. We get an extension of the finite-
dimensional version of Krivine’s theorem. To provide an intuition for the
behavior of the constant in the theorem we point out that for small enough
p and q with p = q we can take ε0 ≈ qε

30
and ν ≈ ε0.

Remark 2. By Lemma 1 in the case of quasi-norm with the constant C0

the inequality (∗∗) is substituted with

(1− ε)

(
m∑

i=1

|ai|p
)1/p

≤
∥∥∥∥∥

m∑
i=1

aiui

∥∥∥∥∥ ≤ 2(1 + ε)C0

(
m∑

i=1

|ai|p
)1/p

.

Due to the example above, we can not remove the constant C0 in this in-
equality.

The proof of the theorem consists of two lemmas.

Lemma 2 For every η > 0 there exists a constant C(η) > 0 such that
if ‖ · ‖ is a q-norm on IR n satisfying (∗) then there exists a block sequence
y1, y2, ..., yk of e1, e2, ..., en which is (1+η)-symmetric and k ≥ C(η, q, p) n

log n
.

Lemma 3 If y1, y2, ..., yk is a 1-symmetric sequence in a normed space sat-
isfying

C−1
1 ‖a‖p ≤

∥∥∥∥∥
k∑

i=1

aiyi

∥∥∥∥∥ ≤ C2‖a‖p

for all a = (a1, a2, ..., ak) ∈ IR k then for every ε > 0 there exists a block
sequence u1, u2, ..., um of y1, y2, ..., yk such that

(1− ε)‖a‖p ≤
∥∥∥∥∥

m∑
i=1

aiui

∥∥∥∥∥ ≤ (1 + ε)‖a‖p

for all a = (a1, a2, ..., am) ∈ IR m, where m ≥ C(p, q)εp/qkν, ν = αε0

ε0+p+αε0
, for

p < 1 and ν = ε0

2ε0+1
, for p ≥ 1, α = min{p, q} , ε0 =

(
qε

1+Cq12q/p

)p/q
.
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At first, D. Amir and V.D. Milman ([AM2], see also [MS]) proved Lemma 2
for q = 1, p ≥ 1 with the estimate k ≥ C(η, q, p) n1/3. Their proof can be
modified to obtain result for 0 < p < ∞, q ≤ 1. Afterwards, W.T. Gowers
([Gow]) showed that the estimate of k can be improved to k ≥ C(η, q, p)n/ ln n.
In fact, he gave two different, though similar, proofs for cases p = 1 and p > 1.
The proof given for case p = 1 strongly used the convexity of the norm and
the fact that p is equal to 1. However, the method used for p > 1 actually
works for every 0 < p < ∞ and even for q-norms. Let us recall the idea of
W.T. Gowers. First we will introduce some definition.

Let Ω be the group {−1, 1}n × Sn, where Sn is the permutation group.
Let Ψ be the group {−1, 1}k × Sk. For

b =
n∑

i=1

biei ∈ IR n, a =
k∑

i=1

aiei ∈ IR k, (ε, π) ∈ Ω, (η, σ) ∈ Ψ

denote

bεπ =
n∑

i=1

εibieπ(i) , aησ =
k∑

i=1

ηiaieσ(i) .

Let h · k = n. For i ≤ k, j ≤ h put

eij = e(i−1)h+j , εij = ε(i−1)h+j , πij = π((i− 1)h + j).

Define an action of Ψ on Ω by

Ψησ((ε, π)) = (ε1, π1), where ε1
ij = ηiεσ(i)j, π1

ij = πσ(i)j.

For any (ε, π) ∈ Ω define the operator

Φεπ : IR k −→ IR n by Φεπ

(
k∑

i=1

aiei

)
=

k∑
i=1

h∑
j=1

εijaieπij
.

For every a ∈ IR k by Ma denote the median of Φεπ (a) taken over Ω. Finally,
let A = {a ∈ lkp : ‖a‖p ≤ 1, a1 ≥ a2 ≥ ... ≥ ak ≥ 0}.

The following claim, which W.T. Gowers proved for case p > 1 and q = 1,
is the main step in the proof of Lemma 2.

Claim 1 Let ‖·‖ be a q-norm on IR n satisfying ‖x‖p ≤ ‖x‖ ≤ B‖x‖p. There
is a constant C0 = C(p, q, δ, B) such that given λ > 0 for every a ∈ A

ProbΩ

{
∃(η, σ) : | ‖Φεπ(aησ)‖q −M q

a |
1/q

>
1

21/q
δ‖a‖ph

1/p
}

< 1/N

with k = C0
n

λ log n
and N = kλ.
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The proof of this claim can be equally well applied for all 0 < p < ∞ and
0 < q ≤ 1. The only change that we have to do is to replace the triangle
inequality

| ‖x‖ − ‖y‖ | ≤ ‖x− y‖ by | ‖x‖q − ‖y‖q |1/q ≤ ‖x− y‖ .

The following two claims are technical and can be proved using ideas of
[Gow] with small changes, connected with replacing p ≥ 1 by p < 1 and the
norm by q-norm.

Claim 2 Let 0 < p < ∞ and δ > 0. There exist a constant λ, depending on
p and δ only, such that for every integer k the set A contains a δ-net K of
cardinality kλ.

Claim 3 Let || · || be a q-norm on IR n satisfying ‖x‖p ≤ ‖x‖ ≤ B‖x‖p. If
there is (ε, π) ∈ Ω such that for every a in some δ-net K of A

| ‖Φεπ(aησ)‖q − ‖Φεπ(aη1σ1)‖
q |1/q ≤ δ‖a‖ph

1/p

for every (η, σ), (η1, σ1) ∈ Ψ then the block basis

{Φεπ(ei)}k
i=1

of (IR k, || · ||) is (1 + 6 (Bδ)q)
1/q

-symmetric.

These three claims imply Lemma 2 in the standard way (see [Gow] for
the details).

Proof of Lemma 3:
Our method of proof is close to the method used in [AM1], but our notation
follows that of [MS] (ch. 10).

First, we will give the Krivine’s construction of block basis. Let a and N
be some integers which will be specified later. Let us introduce some set of
numbers {λj}J . We will say that set

{Bj,i}j∈J,i∈I

(if card I = 1 then we have only one index j) is {λj}J -set if
1) Bj,i ⊂ {1, ..., n} for every j ∈ J, i ∈ I,
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2) Bj,i are mutually disjoint,
3) card Bj,i = λj for every j ∈ J, i ∈ I.

Let us fix some {[ρj]}-set

{Aj,s}0≤j≤N−1,1≤s≤m

for ρ = 1 + 1/a.
For 0 ≤ j ≤ N − 1, 1 ≤ s ≤ m denote

Yj,s =
∑

i∈Aj,s

yi

and define

zs =
N−1∑
j=0

ρ(N−j)/pYj,s.

Clearly, ‖z1‖ = ‖z2‖ = ... = ‖zm‖. The integer m will be defined from

k ≈ m
N−1∑
j=0

[ρ(N−j)/p] ≈ mρN(ρ− 1)−1 = ma
(

a + 1

a

)N

.

Finally, we define the block sequence {us}m
s=1 by

us = zs/‖zs‖.

Now, as in [MS], we will establish the necessary estimates.
Fix N, M ∈ {T + 1, T + 2, ...,m} and ts ∈ {0, ..., T} for s ∈ {1, ...,m}

such that
M∑

s=1

ρ−ts = 1 + η, |η| = 1.

Then
M∑

s=1

ρ−ts/pzs =
M∑

s=1

N−1∑
j=0

ρ(N−j−ts)/pYj,s =

=
N−1+T∑

i=0

ρ(N−i)/p
∑

s≤M, j≤N−1, j+ts=i

∑
l∈Aj,s

yl =
N−1+T∑

i=0

ρ(N−i)/p
∑
l∈Bi

yl

for some {ai}-set {Bi}N−1+T
i=0 , where

ai =
∑

s≤M, j≤N−1, j+ts=i

[ρi−ts ] , 0 ≤ i ≤ N − 1 + T .
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Therefore, we can choose a vector z which has the same structure as zs

(i.e. z =
∑N−1

j=0 ρ(N−j)/p∑
i∈Aj

yi for some {[ρj]}-set {Aj}0≤j≤N−1) such that
the difference ∆ is

∆ =
M∑

s=1

ρ−ts/pzs − z =
N−1∑
s=1

ρ(N−i)/p
∑
l∈Ci

yl +
N−1+T∑

s=N

ρ(N−i)/p
∑
l∈Ci

yl

for some {bj}-set {Cj}N−1+T
i=0 , where

bj =

{
|[ρj − aj]| for 0 ≤ j ≤ N − 1,
aj for N ≤ j ≤ N − 1 + T.

Using technique of [MS] (pp. 66-67) we obtain

‖∆‖ ≤ C2ρ
N/p(4T +N |η|+NMρ−T )1/p and ‖z‖ ≥ (1/C1)ρ

N/p(N/2)1/p .

Hence ∣∣∣∣∣∣
∥∥∥∥∥

M∑
s=1

ρ−ts/pus

∥∥∥∥∥
q

− 1

∣∣∣∣∣∣ ≤
∥∥∥∥∥

M∑
s=1

ρ−ts/pus −
z

‖z‖

∥∥∥∥∥
q

=

=

(
‖∆‖
‖z‖

)q

≤ (C1C2)
q
(

8T

N
+ 2|η|+ 2Mρ−T

)q/p

.

Thus ∣∣∣∣∣∣
∥∥∥∥∥

M∑
s=1

ρ−ts/pus

∥∥∥∥∥
q

− 1

∣∣∣∣∣∣ ≤ Cq(12ε0)
q/p ,

provided T ≤ Nε0 , |η| ≤ ε0 , Mρ−T ≤ mρ−T ≤ ε0 , for some ε0.
Assume T = [Nε0].

CASE 1. p < 1.
Let

∑m
s=1 |αs|p = 1 and as = |αs|. Let α = min{p, q} and δ = ε

1/p
0 /m1/α.

Take βs = ρ−ts/p or βs = 0, ts ∈ {0, 1, ..., T} such that |as−βs| ≤ δ for every
s. It is possible if ρ−T/p ≤ δ and 1 − ρ−1/p ≤ δ. Since p ≤ 1 it is enough to
take a such that it satisfies following the inequalities(

a

a + 1

)[Nε0]

≤ δp =
ε0

mp/α
and δ ≥ 1

p(a + 1)
.

Take a =
[

1
δp

]
=
[

m1/α

pε
1/p
0

]
. Thus δ ≥ 1

p(a+1)
,∣∣∣∑ ρ−ts − 1

∣∣∣ =
∣∣∣∑ βp

s − 1
∣∣∣ ≤ ∣∣∣∑(as + δ)p − 1

∣∣∣ ≤
7



≤
∣∣∣∑(ap

s + δp)− 1
∣∣∣ = δpm ≤ ε0 ,

and ∣∣∣∣∣
∥∥∥∥∥

m∑
s=1

βsus

∥∥∥∥∥
q

−
∥∥∥∥∥

m∑
s=1

αsus

∥∥∥∥∥
q∣∣∣∣∣ ≤

∥∥∥∥∥
m∑

s=1

|βs − as|us

∥∥∥∥∥
q

≤

≤ δq

∥∥∥∥∥
m∑

s=1

us

∥∥∥∥∥
q

≤ δqm ≤ ε
q/p
0 .

Hence ∣∣∣∣∣
∥∥∥∥∥

m∑
s=1

αsus

∥∥∥∥∥
q

− 1

∣∣∣∣∣ ≤ ε
q/p
0 (1 + Cq12q/p) ,

if mp/α ≤ ε0(
1+a

a
)[Nε0] and ma(1+a

a
)N ≤ k , when a =

[
m1/α

pε
1/p
0

]
. Choose N

such that ( a
1+a

)Nε0 is of the order ε0/m
p/α . Then

m
m1/α

pε
1/p
0

(
mp/α

ε0

)1/ε0

=
m1+1/α+p/(αε0)

ε
1/p
0 pε

1/ε0

0

∼ k .

Thus, since 1/α ≥ max{1/p, 1/q},

m ∼ ε0 (pk)
αε0

ε0+p+αε0 ∼ ε0k
αε0

ε0+p+αε0

and for ε1 = ε
q/p
0

(
1 + cq12q/p

)
(1− ε1)

1/q ‖(αs)‖p ≤
∥∥∥∑αsus

∥∥∥ ≤ (1 + ε1)
1/q ‖(αs)‖p

holds. For ε1 small enough (ε1 < 2q − 1) we obtain 1 − ε1/q ≤ (1 − ε1)
1/q

and 1 + 2ε1/q ≥ (1 + ε1)
1/q. Take ε = 2ε1/q, then

ε0 =

(
qε/2

1 + Cq12q/p

)p/q

and
m ≥ C(p, q)εp/qk

αε0
ε0+p+αε0 .

CASE 2. p ≥ 1.
We use the same idea. Let

∑m
s=1 |αs|p = 1 and as = |αs|. Let δ =

ε0/(C
pm). Take βs = ρ−ts/p or βs = 0, ts ∈ {0, 1, ..., T} such that |ap

s−βp
s | ≤
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δ for every s. It is possible if ρ−T ≤ δ and 1−ρ−1 ≤ δ. These two conditions
are met if (

a

a + 1

)[Nε0]

≤ δ =
ε0

Cpm
and δ ≥ 1

a + 1
.

Take a =
[

1
δ

]
=
[

Cpm
ε0

]
. Thus∣∣∣∑ ρ−ts − 1

∣∣∣ =
∣∣∣∑ βp

s − 1
∣∣∣ ≤ ∣∣∣∑(ap

s + δ)− 1
∣∣∣ = δm ≤ ε0.

Since∥∥∥∥∥
m∑

s=1

us

∥∥∥∥∥ ≤ C1C2
‖∑m

s=1 us‖p

‖z‖p

≤ C1C2

(
m
∑

ρN−j[ρj]

‖z‖p
p

)1/p

= Cm1/p

and
|βs − as| ≤ |βp

s − ap
s|1/p ≤ δ1/p ,

we obtain ∣∣∣∣∣
∥∥∥∥∥

m∑
s=1

βsus

∥∥∥∥∥
q

−
∥∥∥∥∥

m∑
s=1

αsus

∥∥∥∥∥
q∣∣∣∣∣ ≤

∥∥∥∥∥
m∑

s=1

|βs − as|us

∥∥∥∥∥
q

≤

≤ δq/p‖
m∑

s=1

us‖q ≤ δq/pCqmq/p ≤ ε
q/p
0 .

Hence ∣∣∣∣∣
∥∥∥∥∥

m∑
s=1

αsus

∥∥∥∥∥
q

− 1

∣∣∣∣∣ ≤ ε
q/p
0 (1 + Cq12q/p) ,

if m ≤ ε0

Cp (1+a
a

)[Nε0] and ma(1+a
a

)N ≤ k , when a =
[

Cpm
ε0

]
. Choose N such

that ( a
1+a

)Nε0 is of the order ε0/(C
pm). Then

m
Cpm

ε0

(
Cpm

ε0

)1/ε0

=
(

Cp

ε0

)1+1/ε0

m2+1/ε0 ∼ k .

Thus
m ≥ ε0

Cp
k

ε0
2ε0+1

and for ε1 = ε
q/p
0

(
1 + Cq12q/p

)
(1− ε1)

1/q ‖(αs)‖p ≤
∥∥∥∑αsus

∥∥∥ ≤ (1 + ε1)
1/q ‖(αs)‖p
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holds. For ε1 small enough (ε1 < 2q − 1) we obtain 1 − ε1/q ≤ (1 − ε1)
1/q

and 1 + 2ε1/q ≥ (1 + ε1)
1/q. Take ε = 2ε1/q, then

ε0 =

(
qε/2

1 + Cq12q/p

)p/q

and
m ≥ C(p, q)εp/qk

ε0
2ε0+1 .

2
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