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Abstract

This note is devoted to the study of the dependence on p of the con-
stant in the reverse Brunn-Minkowski inequality for p-convex balls
(i.e. p-convex symmetric bodies). We will show that this constant is

estimated as
P < Cp) < cm@/P)/p,

for absolute constants ¢ > 1 and C > 1.

Let K C R" and 0 < p < 1. K is called a p-convex set if for any
A i € (0,1) such that A? + p? = 1 and for any points x,y € K the point
Ax + py belongs to K. We will call a p-convex compact centrally symmetric
body a p-ball.

Recall that a p-norm on real vector space X is amap ||| : X — R™
such that
1) [zl >0 Vz #0,
2) ltzx)| = [t =] VteR, ze€X,
3) Ve,y € X lz+ylP < )P + lyl|? -

Note that the unit ball of p-normed space is a p-ball and, vice versa, the
gauge of p-ball is a p-norm.

Recently, J. Bastero, J. Bernués, and A. Pena ([BBP]) extended the
reverse Brunn-Minkowski inequality, which was discovered by V. Milman
([M]), to the class of p-convex balls. They proved the following theorem.

Theorem Let 0 < p < 1. There exists a constant C' = C(p) > 1 such
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that for alln > 1 and all p-balls Ay, Ay C R"™, there exists a linear operator
u: R" — R" with |det(u)| = 1 and

mArh%W”SOOA$“++%Wﬁ’ (+)

where |A| denotes the volume of body A.

Their proof yields an estimate C(p) < C"2/P)/v*,
We will obtain a much better estimate for C'(p), namely

Theorem 1 There exist absolute constants ¢ > 1 and C > 1 such that the
constant C(p) in (%) satisfies

cL/p < C(p) < ' 2/p)/p.

The proof of the Theorem ([BBP]) based on an estimate of the entropy
numbers (see also [Pi]). We use the same idea, but obtain the better depen-
dence of the constant on p.

Let us recall the definitions of the Kolmogorov and entropy numbers. Let
U : X — Y be an operator between two Banach spaces. Let £ > 0 be an
integer. The Kolmogorov numbers are defined by the following formula

dp(U) = inf {|QsU|| | S C Y, dim S =k },

where Qg : Y — Y/S is a quotient map. For any subsets K;, Ky of Y
denote by N(Kj, K3) the smallest number N such that there are N points
Y1, .-, yn in Y such that

N
Ky C (i + K2).
i=1
Denote the unit ball of the space X (Y) by Bx (By) and define the entropy
numbers by

ex(U) =inf{e >0 | N(UBy,eBy) < 2"'}.

For p-convex balls (0 < p < 1) By, B, C R" we will denote the identity
operator id : (R",||-]1) — (R",||-||2) by B1 — Ba, where ||-|; (i = 1,2)
is the p-norm, whose unit ball is B;.



Theorem 2 Given o > 1/p—1/2, there exists a constant C = C(a,p) such
that for any n and for any p-convexr ball B C R" there exists an ellipsoid
D C R"™ such that for every 1 <k <n

maz { di(D — B), ex(B — D)} < C(n/k)* .

Moreover, there is an absolute constant ¢ such that

Clop) < <2>6/p (125)" sor o> 20200 5 328y

D 1—0 2p 2pa
(%)
and
2\ 1 \& 11 1/p—1/2
C(omp)ﬁ(p) <1_€> , for a>};—§,527. (% * *)

Remark 1. In fact, in [BBP] Theorem 2 was proved with estimate (x * ).
Using this result we prove estimate ().

In the following C'(«a, p) will denote the best possible constant from The-
orem 2.
The main point of the proof is the following lemma.

Lemma 1 Let p,q,0 € (0,1) such that 1/¢ —1 = (1/p — 1)(1 — 0) and
v=a(l—40). Then

Cla,p) < 27200 (e/(1 - 0)"Cpp" " C(y,9)" "),

po
where

O I'(1+(1-p)/p)
P +0(1—p)/p) P+ (1—=0)(1—p)/p)’

For reader’s convenience we postpone the proof of this lemma.

I’ is the gamma-function.

Proof of Theorem 2: Takeq=1/2, 1—0 =p/(1—p). Then Cpy = (1 —p)/p
and, consequently, by Lemma 1,

e\ 2/p 1 1/p ap
C(a,p)§c<p> 2% (p) C(l_p,l/2>.
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Inequality (s * %) implies

ap 1 )8/5 3(1—p)
_ < — = 0.
C(l ,1/2) _C<1—5 , where ¢ oo

Thus for a > 3(1 — p)/(2p) and p < 1/2 we obtain

C(a,p)§<2>cm(1i5)8/5'
O

Proof of Theorem 1: By B. Carl’s theorem ([C], or see Th. 5.2 of [Pi]) for
any operator u between Banach spaces the following inequality holds

sup k%ep,(u) < pa sup kdy(u) .

k<n

One can check that Carl’s proof works in the p-convex case also and gives
Da < Cl/p(cra)Ca

for some absolute constant C. Let us fix a = 2/p. Then, by Theorem 2, we
have that for any p-convex body K there exists an ellipsoid D such that

max{e, (D — B), e,(B — D)} < C""@/P)/p,

The standard argument ([Pi]) gives the upper estimate for C,.
To show the lower bound we use the following example. Let B, be a unit
ball in the space [ and By be a unit ball in the space ;. Denote

B | By |V/n _ T(3/2TY™(1 +n/p) - nl/p—1/2
~|Bp[n T TUR(1+n/2)T(1+1/p) T N7

where Cj is an absolute constant.
Consider a body

A

K =AB, .
We are going to estimate from below
\UBy+ K| |UBy+K|['/"
[UBy [V + K[V 2| By |Un
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for arbitrary operator U : R" — R" with |detU| = 1.

To simplify the sum of bodies in the example let us use the Steiner sym-
metrization with respect to vectors from the canonical basis of R" (see, e.g.,
[BLM], for precise definitions). Usually the Steiner symmetrization is defined
for convex bodies, but if we take the unit ball of [ and any coordinate vector
then we have the similar situation. The following properties of the Steiner
symmetrization are well-known (and can be directly checked)

(7) it preserves the volume,

(77) the symmetrization of sum of two bodies contains sum of symmetriza-
tions of these bodies, and

(77i) given an ellipsoid UBY, a consecutive application of the Steiner sym-
metrizations with respect to all vectors from the canonical basis results in
the ellipsoid V B, where V is a diagonal operator (depending on U).

That means that in our example it is enough to consider a diagonal op-
erator U with |detU| = 1.

Let b € (0,1) and P; be the orthogonal projection on a coordinate sub-
space of dimension n — 1. Then direct computations give for every r > 0

rbp
|UBy +rB!| > 2/0 | PLUBY + brP,B" |dx > 2rb,| PUB} + br P B? |,

where b, = (p(1 — b))?. Since PLK = ABJ~', by induction arguments one
has
k
|UB} + K| > (24b%0/20,)" | BUB} + b BK |,
where Py is the orthogonal projection on an arbitrary n — k-dimensional co-
ordinate subspace of R". Choosing b = exp (—%), Py, such that | PB,UBY | >
| By7" | and k = [n/2] we get

_ 1/n
’UBS""K’l/n 1 —1/p 1/p k/n |B5L k|
Cp) > By > (24e717 (2/k)"7) Yo

2
1/2 1/p
> c1\/p'/2(4/e)

for sufficiently large n and an absolute constant ¢;. That gives the result for
p small enough, i.e. p < ¢y, where ¢, is an absolute constant. For p € (cg, 1]
the result follows from the convex case. a



To prove Lemma 1 we will use the Lions-Peetre interpolation ([BL], [K])
with parameters (6, 1).

Let us recall some definitions.

Let X be a quasi-normed space with an equivalent quasi-norms || - ||o and
- . Let X, = (X, - [}).

Define K (t,z) = inf{||zo|lo + t||z1||1 | = = 2o + 1} and

+00
K(t, z)
lzllos = 601 —6) [ =5ar,
0
for 8 € (0,1).
The interpolation space (Xo, X1)g1 is the space (X, - [lo.1)-
Claim 1 Let | -|lo= 1|1 =1 | be p-norms on space X. Then

1

< <
QJWH_Hﬂhl_Wﬂ

for every x € X, with Cpg as in Lemma 1.

Proof: ||z|lg1 < ||z|| since

inf {{|lzolly + ¢llzally | 2= z0+ 21} < min(1,¢) |[]]

and
+00 oo
K(t,z) min(1,?)
lallos =001 —0) [ =2 at <o —0) [ TS ]t = o).
0 0
By p-convexity of norm || - || for a = % <1 we have
tjx — t
||y|| + ||:L' y” > a—l—t(l . ap)l/p > S — where s = L
]l (1 +22)1/ I—p
Hence

) t
K(t,a) = {Jolly + ¢l |2 =20+ 2} > lloll 7oy



and

+0oo
|01 dt 1—6 0\ 0(1—5s)
— >0(1—-¢ / —————— =218 , = =
lz|| — ( ) ) (1 + t9)/st? s s s
_ (0/s)0(0/s) (A1 =0)/s)L((1=0)/s) _ 1
(1/5)I'(1/s) Cpo

where B(x,y) is the beta-function. This proves the claim. a
Claim 2 Let || |lo = -|1 =1 - || be norms on X. Then ||z|jg1 = ||z| for
every x € X.

Proof: In case of norm K (t,z) = min(1,t)||z|. So, ||z|l¢1 = ||z O

The next statement is standard (see [BL] or [K]).

Claim 3 Let X;,Y; (i =0,1) be quasi-normed spaces. Let T : X; — Y,
(1=0,1) be a linear operator. Then

|72 (Xo, X1)aq — (Yo, Yi)oall < IT: Xo — Yo|' | T - Xy — V1%,
Claim 4 Let X; (i =0,1) be quasi-normed spaces. Then for every N > 1,
(0 (X0), 1 (X)), , =0 (X0, X1)y,)
with equal norms.

Proof: The conclusion of this claim follows from equality

N
K(t,x = (21,22, .., xn), 1 (Xo), If' (X1)) = D K (t, 24, Xo, X1) .

i=1
O

Claim 5 Let X; (i = 0,1) be quasi-normed spaces, Y be a p-normed space.
Let T : X; (i=0,1) — Y be a linear operator. Then for every ko, k; > 1

o1 (T (Xo, X1)o1 — V) < Cop i (T Xo — Y)d], (T : X1 — Y).



Proof: As in convex case ([P]), fix ¢ > 0. Consider a subspace S; C Y
(¢ = 0,1) such that dim S; < k; and

1Qs,T : X; — Y/Si|| < (1 +¢)di, (T : X; — Y).
Let S = span(Sp, S1) C Y. Then dim S < ko + k1 — 1 and
|QsT : X — Y/S|| < |Qs,T - Xi — Y/Si.

Note that quotient space of a p-normed space is again a p-normed one. Be-
cause of this, and by Claims 1 and 3,

|QsT : (Xo, X1)g1 — Y/S|| < Cpo|QsT : (Xo, X1)g1 — (Y/S,Y/S)ga]| <
< Cpl|QsT : Xo — Y/S|I'|QsT : X1 — Y/S||° <
< Cppll Qs T : Xo — Y/ Sol|'°(|Qs, T : X1 — Y/5|° <
< Cog(14 )2y (T : Xog — V) dp (T - X1 — V)’

This completes the proof. O

Proof of Lemma 1:
Step 1.
Let D be an optimal ellipsoid such that

dp(D — B) < C(a,p)(n/k)® and ex(B — D) < C(a,p)(n/k)”

for every 1 < k <n.
Let A = C(a, p)(n/k)~.

Step 2.
Now denote the body (B, D)y by By. By Claim 5 (applied for ky = 1),
for every 1 < k < n we have

du(By — B) < Cyl|B — B|'*(du(D — B))’ < CpoX’.

It follows from the definition of entropy numbers that B is covered by 2+~!
translates of AD with centers in R". Replacing AD with 2AD we can choose



these centers in B. Therefore there are 2¥~! points z; € B (1<:i< 2k_1)
such that

ok—1

B C |J(zi+2)\D).
i=1
This means that for any z € B there is some z; € B such that ||z—z;||p < 2.
Also, by p-convexity, ||z — z;||p < 2'/P. By taking the operator u, : R —
X, u,t = tx for some fixed z, and applying Claim 3 (or see [BL], [BS]) it is
clear that
lzlls, < lell5* |zl

Hence, for any z € B there exists z; € B such that

l2 = @ills, < (2'7)'77(20)°,

ie.
er(B — By) < 2079/p(2))°,

Thus, we obtain
dp(By — B) < Cp)!  and  ep(B — By) < 2020-0/p)?

for every 1 < k <n.

Step 3.

Lemma 2 Let B C R" be a p-convex ball and D C R"™ be a convex body.
Let 0 < 0 <1 and By = (B, D)p1. Then there exists a q-convex body B?
such that By C B C 2Y/9By, where 1/q—1 = (1/p — 1)(1 — 6).

Proof : Take the operator U : I?( R") — R"™ defined by U((x,y)) = = + y.
Since

lz +ylls < 277 (lallp + llyllp)  and Nz +ylp < (l2llp + llyll,H)

and by Claims 3, 4 we have

Iz +yll 5, < 20720 (1]l 5, + llyll,)



But by the Aoki-Rolewicz theorem for every quasi-norm || - || with the
constant C' in the quasi-triangle inequality there exists a g-norm

n 1/q n
I llg = inf { <Z H%Hq> [n>0, 2= sz}
i=1 =1
such that ||z, < ||z|| < 2C||z||, with ¢ satisfying 2/7-! = C' ([KPR], [R],
see also [K], p.47).
Thus, By C B? C 21/9By, where BY is a unit ball of g-norm || - ||, O

Remark 2. Essentially, Lemma 2 goes back to Theorem 5.6.2 of [BL]|. How-
ever, the particular case that we need is simpler and we are able to estimate
the constant of equivalence.

Note that Lemma 2 can be easily extended to the more general case:

Lemma 2 Let B; C R"™ be a p;-convex bodies for i = 0,1 and By =
(Bo, B1)o.1- Then there exists a q-convexr body BY such that By C BY C

214 By, where
1 1-6 6
+—.
q Po p1

Remark 3. N. Kalton pointed out to us that the interpolation body (B, D)1
between a p-convex B and an ellipsoid D is equivalent to some ¢-convex body
for any ¢ € (0, 1] satisfying

1/g=1/2>(1/p—1/2)(1 = 90).

To prove this result one have to use methods of [Kal] and [KT]. Certainly,
with growing ¢ the constant of equivalence becomes worse.

Step 4.
By definition of C(a, p) for B? and v = (1 — ) there exists an ellipsoid
D such that for every 1 < k <n

dy(Dy — BT) < C(v,¢)(n/k)" and ex(BT — Dy) < C(y,¢)(n/k)".

By the ideal property of the numbers di, e, and because of the inclusion
By C BY C 2'/9By, for every 1 < k <n

dp(Dy — By) < 2Y1C(v,q)(n/k)Y and ex(By — Dy) < C(v,¢)(n/k)".
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Step 5.
Let @ = 1 + [k(1 — 0)]. Using multiplicative properties of the numbers

dy, e, we get

IN

di+1-a(D1 — By)d.(By — B)

CpoA’2'9C (v, ¢)(n/k) (M)

IN

e

1-0

a(1-0)
) GG /)

IA

C(a,p)e(
and

€k<B — Dl)

IN

€k+1,a(B - BG>ea(BG - Dl)

2020-0/p\0C (v, ¢)(n/k)” <(1_91>1—999>

clor (v

By minimality of C'(«, p) and since 1/g < 1+ (1 — 6)/p we have

IN

a(l—

0)
27200 C (1, q) (n/ k).

IN

e a(1-0)
Clawp) < Clarp)(155) G2 200 (/b

That proves Lemma 1. O
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