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1 Introduction

In this note we study the Euclidean metric entropy of convex bodies and
its relation to classical geometric parameters such as diameters of sections or
mean widths. We provide an exact analysis of a classical Sudakov’s inequality
relating Euclidean covering numbers of a body to its mean width, and we
obtain some new upper and lower bounds for these covering numbers.

We will explain the subject in a little more detail while briefly describing
the organization of the paper. In order to be more precise, let Bn

2 denote
the unit Euclidean ball in Rn. For a symmetric convex body K ⊂ Rn let
N(K, εBn

2 ) be the smallest number of Euclidean balls of radius ε needed to
cover K, and finally let M∗(K) be a half of the mean width of K (see (2.1)
and (2.2) below).

Section 2 collects the notation and preliminary results used throughout
the paper. Sudakov’s inequality gives an upper bound for N(K, tBn

2 ) in terms
of M∗(K), and we show (in Section 3) that if this upper bound is essentially
sharp, then diameters of all k-codimensional sections of K are large, for an
appropriate choice of k. On the other hand, in Section 4 we discuss conditions
that ensure that the covering can be significantly decreased by cutting the
body K by a Euclidean ball of a certain radius, in which case “most” of the
entropy of K lies outside of this Euclidean ball. In Section 5 this leads to
further consequences of sharpness in Sudakov’s inequality which turn out to
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be close to a well-known concept of M -position. Finally, in Section 6 we
obtain lower estimates for covering numbers N(K,Bn

2 ) in terms of diameters
of sections of a body. It is worthwhile to point out here that the most
satisfactory results involve a smaller body T intimately related to K, its
skeleton. In Sections 5 and 6 we will use notions of random projections and
sections, however we shall not try to specify any probability estimates, as
they will be not needed.

2 Notation and preliminaries

We denote by | · | the canonical Euclidean norm on Rn, by 〈·, ·〉 the canonical
inner product and by Bn

2 the Euclidean unit ball.
By a convex body we always mean a closed convex set with non-empty

interior. By a symmetric convex body we mean centrally symmetric (with
respect to the origin) convex body. Let K be a convex body in Rn with the
origin in its interior. The gauge of K is denoted by ‖ · ‖K . The space Rn

endowed with such a gauge is denoted by (Rn, ‖·‖K) or just by (Rn, K). The
radius of K is the smallest number R such that K ⊂ RBn

2 , and is denoted
by R(K). Note that if K is centrally symmetric then 2R(K) is the diameter
of K.

Let K be a symmetric convex body in Rn and let k ≥ 1. By ck(K)
we denote the infimum of R(K ∩ E) taken over all (k − 1)-codimensional
subspaces E ⊂ Rn. Clearly, 2c1(K) = 2R(K) is the diameter of K and
2ck+1(K) is the smallest possible diameter of k-codimensional section of K.
Below we call ck+1(K) the k-diameter of K.

Let K ⊂ Rn be a convex body with the origin in its interior. We denote
by |K| the volume of K, and by K0 the polar of K, i.e.

K0 = {x | 〈x, y〉 ≤ 1 for every y ∈ K} .

Given ρ > 0, we denote

Kρ = K ∩ ρBn
2 and K0

ρ = (Kρ)
0 .

Let X be a linear space and K, L be subsets of X. We recall that covering
number N(K, L) is defined as the minimal number N such that there exist
vectors x1, ..., xN in X satisfying

K ⊂
N⋃

i=1

(xi + L). (2.1)
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We also will use the notions of ε-net and ε-separated set. Let K, A be
sets in Rn and ε > 0. The set A is called an ε-net for K if K ⊂ A + εBn

2 ; it
is called an ε-separated set for K if A ⊂ K and for any two different points
x and y in A one has |x − y| > ε. It is well known (and easy to check) that
any maximal (in sense of inclusion) ε-separated set is an ε-net and that any
ε-net has cardinality not smaller than the cardinality of any (2ε)-separated
set.

Following [MSz] we say that A is an ε-skeleton of K if A ⊂ K and A is an
ε-net for K. If, in addition, A is convex we say that A is a convex ε-skeleton.

We say that A is an ε-separated skeleton of K if A is a maximal ε-
separated set for K. Note that every ε-separated skeleton of K is also an
ε-skeleton of K. We say that A is a convex ε-separated skeleton of K if A is
the convex hull of an ε-separated skeleton of K. We say that A is an absolute
ε-separated skeleton of K if A is the absolute convex hull of an ε-separated
skeleton of K.

Given a convex body K ⊂ Rn with the origin in its interior, we let

MK = M(K) =

∫
Sn−1

‖x‖K dν and `(K) = E

∥∥∥∥∥
n∑

i=1

giei

∥∥∥∥∥
K

,

where dν is the probability Lebesgue measure on Sn−1, and gi’s are N(0, 1)
Gaussian random variables.

It is well known and easy to check that there exists a positive constant
ωn such that for every convex K one has `(K) = ωn

√
n M(K). In fact

1− 1

4n
< ωn = E

(
1

n

n∑
i=1

g2
i

)1/2

< 1.

We also set
M∗

K = M∗(K) = M(K0). (2.2)

It is also well known that for any subspace E of Rn we have (PK)0 =
K0 ∩ E where P is the orthogonal projection on E and the polar of PK is
taken in E. In particular we have

`
(
(PK)0) ≤ `

(
K0
)

hence,

M∗ (PK) ≤ ωn

ωm

√
n

m
M∗ (K) ,
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where m = dim E.
Recall Urysohn’s inequality (see e.g. [P])(

|K|
|Bn

2 |

)1/n

≤ M∗(K). (2.3)

An upper estimate for the k-diameters of K in terms of M∗(K) originated
in [M1]. Below we will use the result from [PT], with the best known constant
proved in [Go2]. This estimate is also know as “lower M∗-estimate”.

Theorem 2.1 Let K ⊂ Rn be a symmetric convex body and ρ > 0. Let
1 ≤ k ≤ n satisfy

k >

(
`(K0

ρ)

ωk ρ

)2

.

Then for a “random” k-codimensional subspace E ⊂ Rn one has

K ∩ E ⊂ ρBn
2 .

Let us also recall the following form of Dvoretzky’s Theorem ([MSch],
[P], [Go1]). The “moreover” part is one-sided estimate that follows from
Milman’s proof. The dependence on ε in both parts follows from Gordon’s
work.

Theorem 2.2 Let ε > 0. Let K ⊂ Rn be a convex body with origin in its
interior and let R := R(K). Let m ≤ ε2 (M∗(K)/R)2 n. Then for “random”
projection P of rank m one has

1− ε

1 + ε
M∗(K) PBn

2 ⊂ PK ⊂ 1 + ε

1− ε
M∗(K) PBn

2 .

Moreover, if M∗(K) < A < R and m ≤ ε2 (A/R)2 n then for “random”
projection P of rank m one has

PK ⊂ 1 + ε

1− ε
A PBn

2 .

We also will use Sudakov’s inequality ([P], [Lif]).

Theorem 2.3 Let K ⊂ Rn be a convex body with origin in its interior. Then
for every t > 0 one has

N(K, tBn
2 ) ≤ exp

(
κ
(
`(K0)/t

)2)
,

where 1 ≤ κ ≤ 4.8 (in fact κ → 1 very fast as N(K, tBn
2 ) grows).

Below we keep the notation κ for the constant from this theorem.
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3 On the sharpness of Sudakov’s inequality

Our starting point is a recent result from [LPT] valid for arbitrary symmetric
bodies K and L.

Theorem 3.1 Let R > a > 0 and 1 ≤ k ≤ n. Let K and L be symmetric
convex bodies in Rn. Let K ⊂ RL and K∩E ⊂ aL for some k-codimensional
subspace of Rn. Then for every r > a one has

N(K, 2rL) ≤ 2k

(
R + r

r − a

)k

.

Remark. The factor 2k above can be replaced by a better function of k (see
[LPT]).

Theorem 3.1 was used in [LPT] as an upper bound for the covering num-
bers, here we would like to interpret it as a lower bound for k-diameters. In
this form it will provide an additional insight into Sudakov’s inequality.

Theorem 3.2 Let R > 1, η > 0. Let K and L be symmetric convex bodies
in Rn such that K ⊂ RL. Assume that

N(K, L) ≥ exp (ηn) .

Then for every k-codimensional subspace E of Rn with

k =

[
η n

ln(12R)

]
one has

K ∩ E 6⊂ 1
4
L.

Proof: Let k =
[

η n
ln(12R)

]
. Denote by a the smallest real number r ≥ 0 such

that there exists a k-codimensional subspace E of Rn satisfying

K ∩ E ⊂ r L.

Assume that a < 1/2 (otherwise the proof is finished). Then by Theorem 3.1
we have

exp (ηn) ≤ N(K, L) ≤
(

2R + 1

1/2− a

)k

.
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Since R > 1 we obtain

a ≥ 1

2
− 2R + 1

exp (ηn/k)
>

1

2
− 3R

exp (ηn/k)
≥ 1/4.

2

From now on, we restrict ourselves to the case L = Bn
2 , which is our main

interest in this paper. By Sudakov’s inequality (Theorem 2.3) we then have
N(K, Bn

2 ) ≤ exp (κ(M∗
K)2n), and let us now assume that this inequality is

almost sharp, i.e.,
N(K, Bn

2 ) ≥ exp
(
ε(M∗

K)2n
)
, (3.1)

for some ε > 0.
Applying Theorem 3.2 directly, for k = k0 :=

[
ε (M∗)2n

ln(12R(K))

]
, we get that

every k-codimensional section of K has diameter at least 1/4.
This insight into geometry of K can be strengthen even further by con-

sidering truncations of the body K. Namely, assuming again that K satisfies
(3.1), for some ε > 0, and letting β > 1, we have two distinct possibilities:

I. Either the covering number N(K,Bn
2 ) can be significantly decreased

by cutting K on the level β, i.e., N(K ∩βBn
2 , Bn

2 ) is essentially smaller
(which in turn means that “most” of the entropy of K comes from parts
far from Bn

2 );

II. or every k′-codimensional section of K has large diameter, for an ap-
propriate choice of k′ > k0 depending on β.

In the next section we study sufficient conditions for Case I to hold, while
in Section 5 we return to consequences of essential sharpness of Sudakov’s
estimate.

4 Improving Sudakov’s inequality

In connection with Case I in Section 3, we discuss the behavior of the covering
numbers of Kβ (= K ∩ βBn

2 ), when β varies. Sudakov’s inequality relates
these numbers to M∗(Kβ), while our point below is to replace M∗(Kβ) by
smaller M∗(Kρ), for some parameter ρ < β.

To prepare the discussion we consider a general statement, which com-
bines Theorems 3.1 and 2.1.
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Theorem 4.1 Let K ⊂ Rn be a symmetric convex body. Let ρ > 0 and
β > 0. Then for every γ > ρ one has

N(Kβ, 2γBn
2 ) ≤

(
2

β + γ

γ − ρ

)2(`(K0
ρ)/ρ)2

. (4.1)

Remark. The proof below gives, actually, the exponent k = d
(
`(K0

ρ)/ρ
)2

+
1/2e in (4.1).

Proof: Let k = d(`(K0
ρ)/ρ)2 + 1/2e. Then, since ω2

k > 1− 1/(2k), we have

`(K0
ρ)

ρ
≤
√

k − 1/2 < ωk

√
k.

By Theorem 2.1 there exists a k-codimensional subspace E ⊂ Rn such that

K ∩ E ⊂ ρBn
2 .

Applying Theorem 3.1 to the bodies Kβ and Bn
2 with R = β, r = γ, and

a = ρ we obtain the estimate announced in the Remark. Now if ρ ≥ R(K)
then, clearly, N(Kβ, 2γBn

2 ) = 1. If ρ < R(K) then

`(K0
ρ)/ρ = `

(
(Bn

2 ∩ 1
ρ
K)0

)
≥ 1,

which means that k ≤ 2(`(K0
ρ)/ρ)2. It proves the theorem. 2

The next corollary is a partial case of Theorem 4.1, where we fix some of
the parameters, in order to compare the results with Sudakov’s inequality.

Corollary 4.2 Let K ⊂ Rn be a convex body with the origin in its interior.
Let ρ > 0 and β ≥ ρ/3. Then

N(Kβ, 4 ρ Bn
2 ) ≤ exp

2

(
`
(
K0

ρ

)
ρ

)2

ln
3β

ρ

 .

Proof: If β ≤ 4ρ then the estimate is trivial. Otherwise let γ = 2ρ. Then,
since β ≥ 2γ,

2
β + γ

γ − ρ
≤ 3β

ρ
.
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Theorem 4.1 implies the desired result. 2

First note that by Sudakov’s inequality we have

N(Kβ, 4ρBn
2 ) ≤ exp

κ

(
`
(
K0

β

)
4ρ

)2
. (4.2)

Therefore, if

4
√

2
κ

√
ln 3β

ρ
`
(
K0

ρ

)
≤ `

(
K0

β

)
,

then Corollary 4.2 improves Sudakov’s inequality.

Now we shall consider coverings of the whole body, without additional
truncations. Let K be a symmetric convex body. Given ρ > 0 define the
function F = FK by

F (ρ) =
`(K0)

`
(
K0

ρ

) .
This function can be used to measure a possible gain in Sudakov’s estimates.
Rewriting Theorem 2.3 we get

N(K, 8 ρ Bn
2 ) ≤ exp

(
κ

(
`(K0

ρ)

8ρ

)2

F (ρ)2

)
,

which should be compared with the following:

Theorem 4.3 Let K be a symmetric convex body and ρ > 0. Then

N(K, 8 ρ Bn
2 ) ≤ exp

2

(
`
(
K0

ρ

)
ρ

)2

ln (6 F (ρ))

 .

Proof: It is known (and easy to check) that for every t > 0 one has
N(K, tBn

2 ) = N(K, (2K) ∩ tBn
2 ). Therefore, for β > 0 and ρ > 0 we have

N(K, 8 ρ Bn
2 ) ≤ N(K, (2K) ∩ 2βBn

2 ) N((2K) ∩ 2βBn
2 , 8 ρ Bn

2 )

= N(K, 2βBn
2 ) N(Kβ, 4 ρ Bn

2 ).
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Now we apply Sudakov’s inequality to estimate the first factor and Corol-
lary 4.2 to estimate the second one. We obtain

N(K, 8 ρ Bn
2 ) ≤ exp

κ

(
`(K0)

2β

)2

+ 2

(
`
(
K0

ρ

)
ρ

)2

ln
3β

ρ

 .

Notice that F (ρ) ≥ 1 and choose

β = 1
2

√
κF (ρ)ρ ≥ 1

2
ρ.

Then

N(K, 8 ρ Bn
2 ) ≤ exp

2

(
`
(
K0

ρ

)
ρ

)2

ln
(
1.5

√
e κ F (ρ)

) ,

which proves the theorem, since κ < 5. 2

5 Quasi M-position

We are now prepared to obtain a further consequence of sharpness of Su-
dakov’s inequality.

Theorem 5.1 Let ε ∈ (0, 1). Let K be a symmetric convex body normalized
in such a way that M∗(K) = 1. Assume that

N(K, 8 Bn
2 ) ≥ exp (εn) .

Then there exist a constant 0 < cε < 1 depending only on ε such that for a
“random” projection P of rank m = [c2

εn] one has

cεPBn
2 ⊂ PK and

(
|PK|
|PBn

2 |

)1/m

≤ 1/cε. (5.1)

We refer to property (5.1) by saying, informally, that PK has a finite
volume ratio.
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Proof: Let

γ := F (1) =
M∗(K)

M∗(K ∩Bn
2 )

=
`(K0)

` ((K ∩Bn
2 )0)

=
ωn

√
n

` ((K ∩Bn
2 )0)

.

Applying Theorem 4.3 with ρ = 1 and using the assumption of our Theorem
we conclude that

2 ln (6 γ) ≥ ε n

(` ((K ∩Bn
2 )0))2 =

ε γ2

ω2
n

.

Therefore there exists an absolute positive constant C such that

γ ≤ C ′
ε := C

√
1

ε
ln

(
2

ε

)
.

Therefore M∗(K ∩ Bn
2 ) ≥ 1/C ′

ε and, applying Theorem 2.2 to the body
K ∩ Bn

2 , we obtain that for “random” projection P of rank m = [n/(2C ′
ε)

2]
one has

1

3 C ′
ε

PBn
2 ⊂ PK ∩Bn

2 ⊂ PK.

On the other hand, by Urysohn’s inequality (2.3) we obtain(
|PK|
|PBn

2 |

)1/m

≤ M∗(PK) ≤ ωn

√
n

ωm

√
m

M∗(K) ≤ 4C ′
ε.

That completes the proof. 2

Remark The proof shows that cε can be taken as

cε = c0

√
ε / ln

(
2
ε

)
,

where c0 is an absolute positive constant.

The property (5.1) exhibited above appeared in the theory already long
time ago, in the context of M -positions of convex bodies. The existence of
M -position was first proved in [M2], and we refer the interested reader to
[P] and references therein for the definition and properties of M -position.
Here let us just recall that an arbitrary convex body K in M -position has
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this property (5.1), moreover, “random proportional projection” of K has
“finite volume ratio” for any proportion 0 < λ < 1 of the dimension n.
This nowadays appears to be the main property of bodies in M -position
used in applications. Theorem 5.1 shows that such a property for some
proportion of n (with some dependence of parameters), is a consequence
of some tightness of covering estimates. We feel that this property may
be important for understanding the geometry of convex bodies, especially
when we investigate covering numbers by ellipsoids. With this in mind we
introduce a new (slightly informal) definition:

Definition. Let K be a convex body in Rn. We say that K is in a quasi
M -position (for a proportion 0 < λ < 1) if “random” proportional projection
of K onto λn-dimensional subspace has finite volume ratio.

The next corollary gives another example of bodies in quasi M -position.
This is a variant of Theorem 5.1 in which the hypothesis about M∗(K) is
replaced by a weaker condition of an upper estimate for entropies.

Corollary 5.2 Let 0 < δ < ε < 1 < A. Let K be a symmetric convex body.
Assume that

N(K, Bn
2 ) ≥ exp (εn) and N(K, A Bn

2 ) ≤ exp (δn)

Then there exist positive constants c, c̄, C depending only on ε, δ, A such
that for “random” projection P of rank m = [cn] one has

c̄ PBn
2 ⊂ PK and

(
|PK|
|PBn

2 |

)1/m

≤ C,

i.e. K is in a quasi M-position for a proportion c.

Proof: First note that the estimate for volumes follows immediately from
covering estimates.

To show the existence of the desired projection note that we have

eε n ≤ N(K, Bn
2 ) ≤ N(K, (2K) ∩ A Bn

2 ) N((2K) ∩ A Bn
2 , Bn

2 )

≤ eδ n N(K ∩ A
2

Bn
2 , 1

2
Bn

2 ).

To estimate (ε− δ)n we can use either one of the two following ways:
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[i] Sudakov’s inequality implies

(ε− δ)n ≤ 4κ
(
`
((

K ∩ A
2

Bn
2

)0))2

.

[ii] Corollary 4.2 implies

(ε− δ)n ≤ 2
(
8`
((

K ∩ 1
8
Bn

2

)0))2

ln(12A).

Now the result follows from Theorem 2.2 in the same way as in the proof of
Theorem 5.1. 2

Remark. The proof above shows that Corollary 5.2 holds with (at least)
two choices of constants c, c̄, C:

[i]

c =
c0 (ε− δ)

A2
, c̄ = c1

√
ε− δ, C = A exp(2δ/c),

[ii]

c =
c0 (ε− δ)

ln(12A)
, c̄ =

c1

√
ε− δ√

ln(12A)
, C = A exp(2δ/c),

where c0, c1 are absolute positive constant.

6 Comparing k-diameters and covering num-

bers

Here we discuss lower estimates for Euclidean covering numbers of a body
in terms of k-diameters of its skeleton. More precisely, we get inequalities
between k-diameters of a body (or its skeleton) and a covering number of Kβ

(= K∩βBn
2 ) for some β, by small balls. We have already seen (Theorem 3.1)

that a small k-diameter of K implies an upper bound for covering of Kβ. On
the other hand we show here that if such a covering is small then, for some
m, m-diameter of any absolute skeleton is small as well.
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Theorem 6.1 Let 1 ≤ k ≤ n. Let K be a symmetric convex body in Rn.
Let β > a := ck+1(K). Let ρ > 0, 0 < δ < 1 be such that

M∗(Kρ/2) ≤ 1
8
δM∗(Kβ). (6.1)

Then
N (Kβ, ρB2) ≥

(
1
δ

)m
,

where

m =

[
1
9

(
M∗(Kβ)

β

)2

n

]
> 1

18

(
a
β

)2

k − 1.

Remark. 1. In fact we show that for every 0 < ε < 1 and every ρ > 0,
0 < δ < 1 such that

2M∗(Kρ/2) ≤ δ
(

1−ε
1+ε

)2
M∗(Kβ). (6.2)

one has the lower bound from the Theorem with

m =

[
ε2
(

M∗(Kβ)

β

)2

n

]
>
(

ε a
β

)2 (
k − 1

2

)
− 1.

2. Condition (6.1) can be viewed in two different ways. Firstly, if we fix ρ and
let δ be the smallest satisfying (6.1), we obtain a lower bound for covering
numbers in terms of the ratio of M∗’s. Secondly, if we fix δ and chose the
best ρ satisfying (6.1), we get a lower estimate for the entropy number (see
[P] for the precise definition).

Proof: We will show the estimate from Remark 1. The Theorem follows by
taking ε = 1/3. Without loss of generality we assume that β ≤ R(K).

Denote N := N(Kβ, ρBn
2 ). Then there are xi ∈ Rn, i ≤ N , such that

Kβ ⊂
N⋃

i=1

xi + ρ Bn
2 . (6.3)

Since we cover Kβ by the Euclidean balls, without loss of generality we can
assume xi ∈ Kβ. Therefore

Kβ ⊂
N⋃

i=1

(xi + ρ Bn
2 ) ∩Kβ ⊂

N⋃
i=1

xi + (ρ Bn
2 ) ∩ (Kβ − xi). (6.4)
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Since K is centrally symmetric and, by (6.1), ρ/2 < β, we obtain

Kβ ⊂
N⋃

i=1

xi + (ρ Bn
2 ) ∩ (2Kβ) =

N⋃
i=1

xi + 2Kρ/2.

Denote

m :=

[
ε2

(
M∗(Kβ)

β

)2

n

]
≤

[
ε2

(
M∗(Kρ/2)

ρ/2

)2

n

]
.

By Theorem 2.2 we obtain that for a random projection P of rank m one has

1− ε

1 + ε
M∗(Kβ) PBn

2 ⊂ PKβ

and, by “moreover” part of Theorem 2.2, for every i ≤ N

P
(
2Kρ/2

)
⊂ 2

1 + ε

1− ε
M∗ (Kρ/2

)
PBn

2 .

It implies that

1− ε

1 + ε
M∗(Kβ) PBn

2 ⊂
N⋃

i=1

Pxi + 2
1 + ε

1− ε
M∗ (Kρ/2

)
PBn

2 .

Thus, by comparison of volumes, for every ρ satisfying

2M∗(Kρ/2) ≤ δ

(
1− ε

1 + ε

)2

M∗(Kβ)

one has
N ≥ δ−m.

Finally notice that, by Theorem 2.1,

a <
M∗(Kβ)

√
n

ωk

√
k

, (6.5)

which implies
(εωka/β)2 k < m + 1.

Since ω2
k > 1− 1/(2k), we obtain the desired result. 2

The following Theorem shows that the use of skeletons allows to avoid
estimating the ratio of M∗’s (and the parameter ρ) in Theorem 6.1, as ex-
plained in Remark 2 after that theorem. Thus, it provides another lower
estimate for covering numbers.
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Theorem 6.2 Let δ ∈ (0, 1), and β > 2a > 0. There exists a constant α,
depending only δ such that the following statement holds:

Let K be a symmetric convex body such that R(K) ≥ β. Let T be an
absolute (2αa)-separated skeleton of Kβ and m be such that cm+1(T ) ≥ a
(i.e. the m-diameter of T is not smaller than a). Then

δ−m0 ≤ N (Kβ, α β Bn
2 ) ,

where

m0 =

[
a2 m

2 β2

]
.

Remarks. 1. In fact we will prove slightly stronger result, namely that
for every ε ∈ (0, 1), δ ∈ (0, 1), and β > 2a > 0 there exists a constant α,
depending only on ε and δ such that the statement above holds with

m0 =

[(
ε a
β

)2 (
m− 1

2

)]
.

Moreover, our proof gives that α can be taken to be equal to Cε δ ln−3 (1/Cε δ),
where

Cε δ = min

{
c,

δ√
ln(1/δ)

(1− ε)2

ε

}
,

for some absolute constant c ∈ (0, 1/4].
2. Taking a = 1, δ = 1/4, β > 2, and ε close enough to 1 we obtain that
if the m-diameter of T is not smaller than 1 then

2m/β2 ≤ N (Kβ, c β Bn
2 ) ,

where c is an absolute positive constant.

In the proof of Theorem 6.2 we will use the following result by Milman-
Szarek ([MSz]).

Theorem 6.3 Let m ≥ 1. Let S ⊂ Rn be a finite set of cardinality m and
let T be the convex hull of S. Then for every 0 < r < R(T ) one has

M∗(T ∩ (r Bn
2 )) ≤ Cr

(
ln

2R(T )

r

)3
√

ln max{m, N}
n

,

where N = N(T, (r Bn
2 )) and C is an absolute constant.
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Proof of Theorem 6.2: Let α be of the form given in Remark 1 for
some (small) positive constant c. Denote ρ := αβ and N = N (Kβ, ρBn

2 ).
We will argue by contradiction. Assume that N < δ−m0 .

Let S be a (2ρ)-separated set for Kβ. Then, as is discussed in the first
section, the cardinality of S does not exceed N and S is a (2ρ)-net for K. Let
T be the absolute convex hull of S. Denote b = β− 2ρ > a. Since K 6⊂ β Bn

2

and S is a (2ρ)-net for K we obtain T 6⊂ b Bn
2 . Apply Theorem 6.1 to the

body Tb with parameter b. We have that whenever ρ satisfies

2M∗(Tρ/2) ≤ δCεM
∗(Tb), (6.6)

where Cε =
(

1−ε
1+ε

)2
, one has

N (Tb, ρB2) ≥
(

1

δ

)m1

,

where

m1 =

[
ε2

(
M∗(Tb)

b

)2

n

]
≥
[(εωma

b

)2

m

]
≥ m0.

This would give a contradiction and thus prove the theorem. Therefore to
complete the proof it is enough to verify (6.6) for our choice of ρ. First note
that by (6.5) we have

M∗(Tb) ≥ ωm a
√

m/n.

On the other hand, since T = conv {S,−S} ⊂ β Bn
2 and N(T, 2 ρ Bn

2 ) ≤ N ,
by Theorem 6.3,

2M∗(Tρ/2) ≤ 2 M∗(T2ρ) ≤ 4 C ρ

(
ln

β

ρ

)3
√

ln(2N)

n
,

where C is an absolute positive constant. Therefore to satisfy (6.6) it is
enough to have for some absolute positive constant C1

C1 ρ

(
ln

β

ρ

)3 √
ln(2N) ≤ δ Cε

√
m a,

or, using the assumption N < (1/δ)m0 ,

C2 ρ

(
ln

β

ρ

)3

ε
√

ln(1/δ) ≤ δ Cε β
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for some absolute positive constant C2. Clearly there exists a choice of ab-
solute constant c such that our ρ satisfies the last inequality. It proves the
result. 2
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Université de Marne-la-Vallée,
5, boulevard Descartes, Champs sur Marne,
77454 Marne-la-Vallée, Cedex 2, France
Alain.Pajor@univ-mlv.fr

18


