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PROPERTIES OF THE OPERATOR OF DISCRETE
INTEGRATION AND SOME APPLICATIONS

AL B, LiTvak

A theorem on the triangular projection, which was proved by S. Kwapien and A. Pel-
ceynski, s reneralized.

¥We say that a subset of naturals is solid |, if it contains all natural numbers between
its maximal and minimal elements or if it is empty. We say that aset A {1,..., ntox
{1,...,n} is k-admissible, if all its ‘horisontal cross-sections’ (or all its ‘vertical cross-
sections') consist of a union of no more than k solid sets.

Theorem. Assume that M is the space of square matrices a = {ars}7 ;_|, that o is an
unconditional norm in M, A C {L...,n) = {1,...,n} Is K-admissible, that Py: M — M is
the prajectar, which corresponds to the set A. Then ||Pall, £ 2= (o), where m is the
absolutely summing norm of the operator a0 ' — [* which is determined by the equality

7o ({ze}iZ,) = {}:Ll :"}

Tk
k=1

In the worl of L. Schwartz [1] a proof of the well-known Menshov-Rademacher Thearem was presented.
It was based on properties of the so-called operator of discrete ntegration o 1Y — (*, which carrelates the

sequence of sums {Ei|=1. x,n}k € I*° with each sequence {r;}$2, € I'. It turns out that the following
Lregi

statement, which was proved in fﬁ], implies the Menshov-Rademacher ‘Theorem.
Theorem. The superposition of the diagonal operator M,: [' — {1, which is generated by the sequence
t={ty}iL1,, and of the operator o is an absolutely summing operator, if £, = O(1/In k).

Reeall that an operator §: X — ¥, where X, ¥ are Banach spaces, is called absolutely summing, if there
exists a constant ¢ such that for any natural m and for any set {z,}7L, from X the inequalily

DolSzdl € sup 3 (x|
=1

ed= =75t 5

holds. The minimal such constant e, which is denoted by w1 (5} is a norm in the space of absolutely summing
operators,
Investigalion of properties of the operator o is based on evaluation of the nocm of its Anite-dimensional

n
analogue, that is the operatar o, - I* — {77 which correlates the sequence {E;_I .zm}k with Lhe sequences
- =1

{#x}52, € B. In [4] with the aid of the thecrem on the triangular projection, an estimate for milen) s
oblained in general, The fallowing statement refines this estimate,

Lemma. mfee] S v/2+lnn (n=1,2,...].
Applying this lermima we can obtain a theorem.
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Theorem 1. Assume that t = {te}iLl, is a meumber sequence, ), — 0, assume that My — g
the diagonal cperator, which corresponds to the sequence £ IF S e 11E < oo, where (£7}31, Is a non-
increasing transposition of the sequence {|t¢|}51,, then the operator oy s absclutely SUIMIMIN g,

Remark. It is easy to see that if the operator oM, is absclutely summing and il the series I
unconditionally converges in L', o) then the series 340 tefi converges almost everywhere and its parctial
sums have a summahble majarant. Aleng with this remark we obtain a corollary applying Theorem 1.

Coroilary. If the secies 3y~ fi unconditionally converges in L'(X,p) and il Tt ot &

sequence [t 52, such that ty — 0 then the series 3, t¢fi converges almest everywhere,

Particularly, this fact is true if 5o [ty |7 < oo for same p < oo (see [4]).

We mentioned above that in [3] with the aid of the theorem on the triangular projection, an estimatic 15
obtained, which is close to the statement of the lermma. It turns out that conversely, with the aid af Lhis
lemma we ean obtain Lhe theorem on the triangular projection and some its generalizations.

We need the following definitions and notation. We denote by Af the linear space of square malrices
a = {ay;}7 ;- We denote by u' the matcix such that

u:i'r - {l ?I’_}I =1 mwm=

Y 0 in other cases.
For aset 4 < {1,...,n} x {1,...,n} we denote by £, Lhe projector onto the set A, that is the operator
Py: M — M such that Py(a) = Z{I.J)EA arru?? for each malrix o« = [GIJ}:’L.J:L = M. We say thal the
operator Py is the triangular projection Ty M — M if A= ([, J): T+ J s n+ 1}.

If @ is a norm in M then we determine Lthe conjugated norm by the equality o {a) =

EUP&E.ﬁf,a{ﬁ]ﬁl |‘E?,J=L LII_Fbe|.. Nota that &™ = .

Definition. The norm e in M is called unconditional if for any subsequences {s7)7-) and {Er}fo ), where
lsfl=1(L I <n) |ts]=1(1 < J < n)for each matrix a = {ars}fsoy € M the equality wfa) =
c\:( {SIEJEIJ}FIJEL] halds.

Defindtion. A subset of the naturals is called solid, if 1t containg all natural numbers between its maxirnal
and minimal elements or if 1t is empty,

Definition. A set A C{l,...,n} = {1,...,n} is called admissible, if all ils "horisontal cross-sections’ ace
salid, i.e. for all I € {1,...,n} either there exists ny and my from {1,....n} such that {I, K] € A if and
anly if K € {nr,...,mr}, or the eross-section with respect ta s empty.

Kwapien and Pelezynski have shown (we are interested in norms of projections Pt [3] that under some
conditions for the unconditional matrix norm o, the estimate |75, < logs 2n holds. We generalize their
result for other projections.

Theorem 2. Assume that A C {1,...,n}={1,... n} is an admissible set and that oo iz an inconditional
norm in M. Then ||Pal|l, < 2milen).

Proef. For matrices a = {“H}?,J=1= b= 1{6;;}?J=1 and & < n we denote by o the sequence [eps il €

{* such that
apsbipe for J €0
CRT =

n for J=n

Then we oblain from the admissibility of the set A for all a = {I’![J}FJEI e M

a(Pa(a)) = sup Z arpbrr
bEM.a(8)€1 | Trea
n my | n k
= sup y cral =2 sip sup cry
BEM a(b]E1 ,‘?‘;{;%{, bt ot (b€l kgn 22

n
=12 sUp Z ”‘Tucl”gm .
BEM am (A1 "
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Applying Lhe lemma we have

n
af Pylal} 2 sUp Ty sup Z H{er, o
BEM ot (b)g] sel= =) €1 r oy
m m
=2 (aa) SUp sHp z E CriTy
LR S R T TS ke | £ 0 Syl (e
rE n
= 2:r1|&r.1:| SUP sup sup ZS[ZC;JIJ‘
bEM ot (Mg llzs|=ldgn =050 (70 o I

rl

2ryley) sUp E arrbrrsrzs
bEM, e (b€ |7 T=1
lesl=t]asi=1

I

drplay lela)

(the unconditionality of the norm o implies the last equality). Thus, ||Pa]], <€ 2m{era) € 7+ 2lan,

Remurk [ I we require in the definition of an admissible set A that all ‘horizontal cross-seclions' are
solid and in this case focall T2 {1,... n} eigther (I,1) € A, or the cross-section with respect to [ is empty
then, as it is seen [rom the proof of Theorem 2, ||P4l|, < (o). Particularly, [| 75|, < 7/2+1nn. The last
estimate is better than the estimate of wapien and Pelezynski beginning lrom n = 4.

Remark 2. Obviously, if in the definilion of an admissible set we take 'vertical cross-sections' Lhen the
estimate keeps.

Let us generalize Theorem 2.

Definition. We say that a set A C {1,...,n} = {L,...,n} is K-admissible, if all ils 'horizontal cross-

sections’ (or all its “vertical cross-sections’) consist of a union of no mare than /& solid sets.
By repeating the proaf of Theorem 2 with obvious modifications we obtain the following statement.

Theorem 3. Assumethat A < {1,... n}={1,... n} isa K-admissible set and that @ fs an unconditional
norm in M. Then ||[Bil|, € 2K {ea}.
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