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Abstract

In this paper we study Euclidean projections of a p-convex body
in IRn. Precisely, we prove that for any integer k satisfying lnn ≤
k ≤ n/2, there exists a projection of rank k with the distance to
the Euclidean ball not exceeding Cp(k/ln(1 + n

k ))1/p−1/2, where Cp

is an absolute positive constant depending only on p. Moreover, we
obtain precise estimates of entropy numbers of identity operator acting
between `p and `r spaces for the case 0 < p < r ≤ ∞. This allows
us to get a good approximation for the volume of p-convex hull of n
points in IRk, p < 1, which shows the sharpness of the announced
result.

0 Introduction.

Our work is motivated by so-called “Isomorphic Dvoretzky Theorem” proved
recently by Milman and Schechtman [M-S1], [M-S2] (see also [G1]). The the-
orem states that given 1 ≤ k ≤ n/2 and a centrally symmetric body K in IRn

there exists a k-dimensional subspace E ⊂ IRn such that Banach-Mazur dis-
tance between K ∩ E and the Euclidean ball is bounded by

C max {1,
√

k/ ln(1 + n
k
)}, where C is an absolute constant (see below the

precise definitions). In the dual setting it means that there exists a projec-
tion P of rank k such that Banach-Mazur distance between PK and the Eu-
clidean ball has the same upper bound. Since the condition of the symmetry
is natural for functional analysis but not so natural for convex geometry, the
work of Milman and Schechtman leads to the investigation of similar question
about general convex bodies and even quasi-convex bodies. It was shown by
Gordon, Guédon and Meyer [G-G-M] that the same estimate holds for non-
symmetric convex bodies as well (for k ≤ cn/(ln2 n)). The authors have used
a different approach, based on Rudelson’s result ([R1], [R2]) about John
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decomposition. Moreover, very recently Litvak and Tomczak-Jaegermann
[L-T] was able to show that the proof of Milman and Schechtman can be
extended to the non-symmetric case for all 1 ≤ k ≤ n/2. In fact, the authors
extended to the non-symmetric case so-called “The proportional Dvoretzky-
Rogers factorization” ([B-S], [S-T]), the only place, which needs symmetry
in the proof.

In this paper we investigate the behavior of projections of quasi-convex
(not necessarily symmetric) bodies. The study quasi-convex bodies has been
of interest in the last years, since it turns out that many crucial results of the
asymptotic theory hold for non-convex (but quasi-convex) bodies as well.
It is rather surprising, because convexity was essentially used in the first
proofs of most results. Let us note here that contrary to the convex case
the statements about projections and sections of the quasi-convex bodies are
completely different and do not follow one from the another, since one cannot
use duality in the quasi-convex setting.

We prove that given p-convex body K, there exists a projection P of
rank k such that Banach-Mazur distance from PK to the Euclidean space
is bounded by Cp max{1, (k/ln(1 + n

k
))1/p−1/2} and Banach-Mazur distance

from PK to its convex hull is bounded by C
′
p max{1, (k/ln(1 + n

k
))1/p−1},

where Cp, C
′
p > 0 depend on p only. Of course, we use crucially the corre-

sponding “convex” result. However, the straightforward extension can not be
done. Moreover, recall that proofs in the convex case deals with sections and
the result for projections follows by duality. We do not know any reasonable
estimate for sections of p-convex bodies. The reason is that a projection, as
any linear operator, preserves the convex hull of the set, while the convex
hull of a section of a set can be very far from the section of the convex hull of
the set, as was shown by Kalton [K1]. We expect that estimates for sections
are much better for small p.

To show the sharpness of estimates above, we study entropy numbers of
identity operators acting between `p and `r spaces, when 0 < p < r ≤ ∞.
Such investigation was already done by Schütt [Sc] (see also [Pi] and [H]) for
p ≥ 1 and by Edmunds and Triebel [E-T] for p < 1. We give here a different
proof which leads to a better dependence of the constants on p, when p tends
to 0. Our proof also allows to estimate the corresponding Gelfand numbers in
the case r ≤ 2. As a corollary we obtain estimates for the volume of p-convex
hull of a set of points in IRk.
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1 Definitions and notations.

By a body we always mean a compact set in Rn containing the origin as
an interior point and star shaped with respect to the origin. Let K be an
arbitrary body in IRn, the gauge functional of K is defined by ‖x‖K = inf{t ≥
0 | x ∈ tK}. By ellipsoid we always mean a linear image of the canonical
Euclidean ball (thus all ellipsoids below are centered at origin). Given bodies
K, B in IRn we define the Banach–Mazur distance by

d(K, B) = inf{λ > 0 | K − z ⊂ u(B − x) ⊂ λ(K − z)},

where infimum is taken over all linear operators u : IRn → IRn, and all
x, z ∈ IRn. We also define the following distance

d0(K,B) = inf{λ > 0 | K ⊂ uB ⊂ λK},

where infimum is taken over all linear operators u : IRn → IRn. Clearly, if K
and B are centrally symmetric bodies, then d(K, B) = d0(K, B) and it is the
standard Banach–Mazur distance. For q ∈ (1, 2], and a body K, we define
the constant Tq(K) as the smallest possible constant C such that for every
m, every x1, ..., xm ∈ K the following inequality holds

inf
εi=±1

{∥∥∥∥∥
m∑

i=1

εixi

∥∥∥∥∥
K

}
≤ Cm1/q.

The constant Tq(K) is closely connected to the equal-norms type constant
(see e.g. [G-K]).

Let p ∈ (0, 1]. A body K is called p-convex if for any x, y ∈ K, and any
λ, µ ∈ [0, 1], λp + µp = 1, the point λx + µy belongs to K. Correspondingly,
the non-negative homogeneous functional ‖ · ‖K on IRn is called p-norm if for
every x, y ∈ IRn we have ‖x + y‖p

K ≤ ‖x‖p
K + ‖y‖p

K . Let us note that we
do not require the symmetry in our definition. Similarly, a body K is called
quasi-convex if there is a constant C such that K + K ⊂ CK and the non-
negative homogeneous functional ‖ · ‖ on IRn is called C-quasi-norm (or just
quasi-norm) if for every x, y ∈ IRn we have ‖x+y‖K ≤ C max {‖x‖K , ‖y‖K}.
By Aoki-Rolewicz theorem (see e.g. [K-P-R], or [Kö] p.47), for every C-
quasi-norm on IRn there is a p-norm ‖ · ‖0, where 21/p = 2C, such that
‖x‖ ≤ ‖x‖0 ≤ 2C‖x‖ for every x ∈ IRn. Because of it we restrict ourselves
to the study of p-convex bodies only, however all results can be equally well
stated for quasi-convex bodies.
Given p ∈ (0, 1] and a set A, its p-convex hull is defined as

p-conv A =

{
m∑

i=1

λixi | m ∈ IN, xi ∈ A, λi ≥ 0,
m∑

i=1

λp
i = 1

}
.
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If p = 1 we write conv A. The p-absolute convex hull is p-conv (A ∪ −A)
and we denote it by p-absconvA. It was shown in [B-B-P] that for p ∈ (0, 1)

p-conv A =

{
m∑

i=1

λixi | m ∈ IN, xi ∈ A, λi ≥ 0, 0 <
m∑

i=1

λp
i ≤ 1

}
.

Thus for any p ∈ (0, 1) and for every set A, the origin belongs to closure of
p-conv A.
Given p-convex body K, we define

αm = αm(K) = sup{m−1

∥∥∥∥∥
m∑

i=1

xi

∥∥∥∥∥
K

| xi ∈ K, i ≤ m}

and if δK denotes d0(K, conv K) then it is known by a result of Peck [P] that
δK = inf {λ > 0 | conv K ⊂ λK} = sup αm. Note also that by property of
p-norm, αm ≤ m−1+1/p.

Given set A ⊂ IRn, by vol(A) we denote the volume of A.
Recall that given bodies K, B in IRn the covering number N(K, B) is the

smallest number of translation of B needed to cover K. For a positive integer
k the entropy number ek(K, B) is the smallest ε such that N(K, εB) ≤ 2k−1.
The following properties of covering and entropy numbers are well-known
(see e.g. [Pis2], pp.56-63, with obvious modifications in the quasi-convex
case). The sequence {ek(K, B)}k is non-increasing. If B is a body and K is
a p-convex body then for every positive ε

ε−nvol(B)/vol(K) ≤ N(B, εK) ≤ vol(B + εK/21/p)/vol(εK/21/p). (1)

For every sets K1, K2, K3 in IRn and every positive integers k and m we have
ek+m−1(K1, K2) ≤ ek(K1, K3)em(K3, K2). Given an operator u : E → F we
denote ek(u) = ek(uBE, BF ), where BE is the unit ball of E and BF is the
unit ball of F and the Gelfand numbers ck(u) are defined for k = 1, . . . , n by

ck(u) = inf{‖u : Ek → F‖, Ek ⊂ E with codim Ek < k}.

For 0 < p, q ≤ ∞, x ∈ IRn we denote by idn
p,q the identity operator from

`n
p to `n

q and |x|p = (
n∑

i=1

|xi|p)1/p. By Bn
p we denote the unit ball of `n

p , i.e.

{x ∈ IRn, |x|p ≤ 1}. As usual e1, e2, . . . , en denotes the canonical basis of IRn.
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2 Large rank projections of p-convex bodies.

In [G-K] (Lemmas 2, 3 with remark after it) the authors proved that if p-
normed space has equal-norms type q > 1 then the distance from the space
to the corresponding normed space is bounded by a constant depending on
p, q, and type constant only. We start with the following non-symmetric
analog of their result.

Lemma 1 Let p ∈ (0, 1), q ∈ (1, 2], K be a p-convex body and B be a
symmetric body with respect to the origin. Define φ as φ = (1/p− 1/q)/(1−
1/q) then

(i) δK ≤
(

c

p(q − 1)

)1/p (1−1/φ)

(Tq(B) d0(K, B))1−1/φ,

(ii) δK ≤
(

c

p(q − 1)

)(φ−1)/p

(Tq(B) d0(conv K, B))φ−1,

(iii) d0(K,B) ≤
(

c

p(q − 1)

)(φ−1)/p

Tq(B)φ−1d0(conv K, B)φ,

where c > 0 is an absolute constant.

The proof is essentially the same as in the symmetric case but for complete-
ness we outline it here.

Proof. Let d = d0(K, B) and T = Tq(B). Without loss of generality
we can assume that (1/d)B ⊂ K ⊂ B. Let m be a positive integer and
xi, i = 1, . . . , 2m be a family of points in K, then xi ∈ B, i ≤ 2m and by
definition there is a choice of signs εi, i ≤ 2m, such that ‖∑ εixi‖B ≤ T2m/q.
Since the body B is symmetric we can assume that A = {i | εi = 1} has
cardinality larger than 2m−1. Thus∥∥∥∥∥

2m∑
i=1

xi

∥∥∥∥∥
p

K

=

∥∥∥∥∥∥
2m∑
i=1

εixi + 2
∑
i6∈A

xi

∥∥∥∥∥∥
p

K

≤ dp

∥∥∥∥∥
2m∑
i=1

εixi

∥∥∥∥∥
p

B

+ 2p

∥∥∥∥∥∥
∑
i6∈A

xi

∥∥∥∥∥∥
p

K

≤ dpT p2mp/q + 2mpα2m−1 .

Thus for any k ≤ m

αp
2m ≤ αp

2k + dpT p
∞∑

i=k+1

2−ip(1−1/q) ≤ 2k(1−p) + dpT p 2−kp(1−1/q)

p(1− 1/q) ln 2
.

5



Choosing k from 2k(1−p)(p(1−1/q) ln 2) = dpT p2−kp(1−1/q) we get the first esti-
mate. The second and third estimates follow from the inequality d0(K, B) ≤
δKd0(conv K, B). 2

This lemma allows us to extend the “Isomorphic Dvoretzky Theorem” to
the p-convex setting.

Theorem 2 There exists an absolute positive constant c such that for every
p-convex body K in IRn, 0 < p < 1, for all integer 1 ≤ k ≤ n/2 there exists
a projection P of rank k such that

d0(PK,Bk
2 ) ≤ Cp max

{
1,
(

k

ln(1 + n
k
)

) 1
p
− 1

2
}
,

where Cp ≤ (c/p)2/p2
.

Proof. It is known [L-T] (see also [M-S1], [M-S2], [G1], [G-G-M]) that for
all integer k = 1, . . . , [n/2] there exists a projection P of rank k+1 such that

d(P (conv K), Bk+1
2 ) ≤ A := c max

{
1,

√√√√ k

ln(1 + n
k
)

}
.

In other words there are an ellipsoid centered at the origin E and a vector
a ∈ IRn such that PE ⊂ P (conv K) − a ⊂ A(PE). Let Q be an orthog-
onal projection of rank k with Ker Q ⊂ span {Ker P, a}. Then QP = Q
which gives QE ⊂ QK ⊂ AQE . The result follows now by Lemma 1, since
T2(QE) = 1, φ = 2(1/p− 1/2) and (conv QK) = Q(conv K). 2

Remark 1. If δK is not large then the trivial estimate cpδK

√
k

ln(1+n
k
)

can

be better than the one given in the theorem. Thus the theorem is of interest
for “essentially” non-convex bodies only.

Remark 2. The theorem with the same proof holds without restriction
“origin is an interior point of K” (assuming that interior of K is not empty).

Remark 3. The theorem holds for k > n/2 as well. Indeed, let ε ∈ (0, 1/2)
and k = [(1− ε)n]. Recently, the first name author ([G2], Theorem 2.3) has
shown that for any convex body K with baricenter at origin there is a k-
dimensional section E such that d0(K ∩ E, Bk

2 ) ≤ c
√

k/ε3/2, where c is an
absolute constant. The proof is based on corresponding result from [L-M-P]
and estimate for the parameter M̃ =

∫
K |x|2dx/vol(K) ([G2], Theorem 2.2).
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In dual formulation it means that for any convex body K there are a projec-
tion of rank k and a point a ∈ K such that

d(P (K − a), Bk
2 ) ≤ c

√
k/ε3/2. (2)

Thus repeating the proof above, we get that the theorem holds for any k =
[(1 − ε)n] > n/2 with an additional factor ε3(1/2−1/p). Note also that (2)
with slightly worse dependence on ε follows immediately from so-called “The
proportional Dvoretzky-Rogers factorization” [L-T] (see also [B-S] and [S-T]
for the symmetric case).

It is interesting to note that dependence on n and k in the theorem is
optimal as simple example of the Bn

p shows. To prove it we need the following
volume estimate.

Lemma 3 There exists an absolute positive constant c such that for every
set of points x1, . . . , xn in the k-dimensional space IRk, the following estimate
holds(

vol(p-absconv{x1, . . . , xn})
vol(absconv{x1, . . . , xn})

)1/k

≤ Cp min

1,

(
ln(1 + n

k
)

k

) 1
p
−1
 ,

where Cp =
(

c
p
ln(2/p)

)1/p
.

We obtain this lemma as a corollary of entropy estimates at the end of
our paper.

Remark. In particular the lemma implies that for every set of points x1,
. . . , xn in the k-dimensional Euclidean ball Bk

2 we have(
vol(p-absconv{x1, . . . , xn})

vol Bk
2

)1/k

≤ Cp min

1,

(
ln(1 + n

k
)

k

) 1
p
− 1

2

 ,

where Cp =
(

c
p
ln(2/p)

)1/p
. Indeed, it follows by well-known estimate of

vol(absconv{x1, . . . , xn}) obtained independently by Bárány-Füredy [B-F],
Carl-Pajor [C-P], and Gluskin [G].

Proposition 4 For every p ∈ (0, 1], for all integer k = 1, . . . , n, and all
projections P of rank k we have

d(PBn
p , Bk

2 ) ≥ 1

Cp

max

1,

(
k

ln(1 + n
k
)

) 1
p
− 1

2

 ,

where Cp is the same constant as in the lemma above.
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Proof. Let E be an ellipsoid satisfying PBn
p ⊂ E and d be the best constant

such that
1/d E ⊂ PBn

p ⊂ E .

Denote by v the isomorphism on IRk such that v(E) = Bk
2 and define for all

i = 1, . . . , n, xi = v P ei. It is clear that for all i = 1, . . . , n, |xi|2 ≤ 1 and
that

1/d ≤
(vol(v(PBn

p ))

volBk
2

)1/k

=
(vol(PBn

p )

volE

)1/k

.

As v(PBn
p ) = p-absconv{x1, . . . , xn}, we conclude applying Lemma 3 and

remark after it, that

d ≥ 1

Cp

max
{
1,
(

k

ln(1 + n
k
)

) 1
p
− 1

2
}
.

It is now enough to choose an ellipsoid E which realizes the distance from
PBn

p to the Euclidean ball. 2

We would like to end this section with the version of the theorem deal-
ing with the estimates for distance from projection of p-convex body to its
convex hull. Recall that by strong form of Carathéodory theorem if K is
a k-dimensional p-convex body then δK ≤ k1/p−1. Repeating the previous
argument we obtain the following theorem.

Theorem 5 There exists an absolute constant c such that for every p-convex
body K in IRn, 0 < p < 1, for all integer k ≤ n/2, there exists a projection
P of rank k such that

δPK ≤ cp max
{
1,
(

k

ln(1 + n
k
)

) 1
p
−1}

,

where cp ≤ (c/p)2/p2
.

Moreover, if K = Bn
p then for all projection P of rank k, we have

δPK ≥ 1

Cp

max
{
1,
(

k

ln(1 + n
k
)

) 1
p
−1}

,

where Cp ≤
(

c
p
ln(2/p)

)1/p
.

Remark 1. As above we do not need the restriction “origin is an interior
point of K”. Also, as it follows from the proof, there exists one projection
which satisfies both estimates of Theorem 2 and 5.
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Remark 2. The last part of Theorem 5 shows that one can not expect in
general that there exists a projection of p-convex body of sufficiently large
rank which is almost convex. It was known ([K2]) that to get “convex”
projection (i.e. projection such that δPK ≤ Cp) the rank of the projection
can not exceed cp log n. Thus the formula above is quantification of this
observation. The similar question about sections of p-convex body remains
open.

3 Entropy numbers in the p-convex case.

In this section we start by extending a few known convex results to the quasi-
convex case. First, we extend result of Schütt [Sc] about entropy numbers
of identity operator acting between `p and `r spaces (see also [Pi], [H] for
the upper estimates), to the case 0 < p < r ≤ ∞. When p < 1, the upper
estimates are already proved by Edmunds and Triebel [E-T]. The proof we
give here is new and gives better dependence in p when p goes to 0.

Theorem 6 Let 0 < p < r ≤ ∞ and n be an integer. Let p′ = min{1, p}
and r′ = min{1, r}. There are absolute positive constants c0, c1, c2 such that
for all integer k one has

(i) if k < [log2 n] then ek(id
n
p,r) ∈ [1/2, 1].

(ii) if [log2 n] ≤ k ≤ n then

c
1/p′

0 f1(n, k) ≤ ek(id
n
p,r) ≤ 2 · 21/rC1/p−1/r

p f1(n, k),

where f1(n, k) =

{
ln(1 + n

k
)

k

}1/p−1/r

and Cp = c1
p′

ln
(

2
p′

)
.

(iii) if k > n then

c2

√
r′/p′f2(n, k) ≤ ek(id

n
p,r) ≤ 2 · 61/r′C1/p−1/r

p f2(n, k)

where f2(n, k) = 2−k/nn1/r−1/p and Cp as above.

The proofs of (i) and (iii) are standard, but we show it for completeness.
In the case k > c3n/p′ one can replace the constant in front of f2(n, k) with
c48

1/p′ . The case p ≥ 1 holds by Theorem 1 of [Sc], so we restrict ourselves
to the case p < 1. We will need two auxiliary lemmas which are essentially
12.1.11 and 12.1.12 of [Pi], adapted to the quasi-convex case. The proofs
are identical and we only need to substitute the triangle inequality by the
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quasi-triangle one. All the spaces considered are IRn equipped with some
quasi-norm. When there is some quasi-normed indexed by a parameter i, Ei

denotes the space (IRn, ‖ · ‖i).

Lemma 7 For i = 0, 1, let ‖ · ‖i be a symmetric Ci-quasi-norm on IRn and
for θ ∈ [0, 1] assume that a quasi-norm ‖ · ‖θ satisfies ‖x‖θ ≤ ‖x‖θ

0‖x‖1−θ
1 for

all x ∈ IRn. Then for every quasi-normed space F , for every linear operator
T : F −→ IRn, for every integer k, m one has

em+k−1(T : F −→ Eθ) ≤ (C0em(T : F −→ E0))
θ(C1ek(T : F −→ E1))

1−θ.

Remark. This lemma holds true (even without the constants C0 and C1 in
the last formula) for Gelfand numbers instead of entropy numbers.

Lemma 8 Let A > 0, θ ∈ [0, 1], and assume that quasi-norms ‖ · ‖0, ‖ · ‖1,
‖ · ‖θ satisfy

inf {a‖y‖0 + b‖z‖1 | y + z = x} ≤ Aaθb1−θ‖x‖θ (3)

for every a ≥ 0, b ≥ 0 and x ∈ IRn. If F is a C-quasi-normed space then for
every linear operator T : IRn −→ F , for every integer k and m one has

em+k−1 (T : Eθ −→ F ) ≤ AC (em (T : E0 −→ F ))θ (ek (T : E1 −→ F ))1−θ .

Remark. We will use this lemma with θ = p < 1, E0 = `n
p , E1 = F = `n

∞,
Eθ = `n

1 . In this case, we can take A = C = 2. Indeed, let x ∈ IRn, a > 0,
b > 0 and assume, without loss of generality, that xi ≥ 0 for every i and∑

xi = 1. Now, let

v = min

{
1,

(
a

b

1− p

p

)p}
and define y and z as follows, zi = min {v, xi} for every i, y = x− z. Then

a|y|p + b|z|∞ ≤ aN−1+1/p + bv,

where N = |{i |xi > v}|. Since Nv ≤ 1 and (1− p)p−1p−p ≤ 2, inequality (3)
follows with A = 2.

Proof of Theorem 6.
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Case 1. k < [log2 n].

One trivially has ek

(
idn

p,r

)
≤ 1. Assume that Bn

p ⊂ ∪N
1 xi + εBn

r with

N ≤ 2k−1, then there exist l ∈ {1, . . . , N} and two different vectors of the
canonical basis ei and ej such that ei ∈ xl + εBn

r and ej ∈ xl + εBn
r . Thus

21/r = |ei − ej|r ≤ ε 2max {1,1/r}.

That proves the case (i).
Case 2. [log2 n] ≤ k ≤ n.
Upper estimate.

We start to estimate ek

(
idn

p,∞

)
. Let us denote by A = A(n, p) the smallest

constant which satisfies for all 1 ≤ k ≤ n

ek

(
idn

p,∞

)
≤ A

{
ln(1 + n

k
)

k

}1/p

.

By Lemma 7 used with F = E0 = `n
p , E1 = `n

∞, θ = p, Eθ = `n
1 and m = 1,

we get

ek

(
idn

p,1

)
≤ 4ek

(
idn

p,∞

)1−p
. (4)

Factorizing identity from `n
p to `n

∞ through `n
1 , we obtain by properties of

entropy numbers and by (4)

ek

(
idn

p,∞

)
≤ e[(1−p)k]

(
idn

p,1

)
e[pk]

(
idn

1,∞

)
≤ 4

(
e[(1−p)k]

(
idn

p,∞

))1−p
e[pk]

(
idn

1,∞

)
.

It is well known that for all k = 1, . . . , n,

ek

(
idn

1,∞

)
≤ c min

{
1,

ln(1 + n
k
)

k

}
.

Since for a ∈ (0, 1)

ln(1 + n
ak

)

ak
≤ min

{
1

a2
,
2

a
ln
(

2

a

)}
ln(1 + n

k
)

k
,

we obtain

ek

(
idn

p,∞

)
≤ 4c

(
1

1− p

)2 1−p
p 2

p
ln

(
2

p

)
A1−p

{
ln(1 + n

k
)

k

}1/p

for every [log2 n] ≤ k ≤ n. Hence, by definition of A,

A ≤ 4c

(
1

1− p

)2 1−p
p 2

p
ln

(
2

p

)
A1−p ≤ c1

p
ln

(
2

p

)
A1−p,
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which implies the desired estimate for r = ∞ and k ≤ n.
The proof of the upper estimate for every r and k ≤ n is based on the

interpolation inequality: if 0 < p < q < r ≤ ∞ and θ ∈ [0, 1] be such that
θ
p

+ 1−θ
r

= 1
q

then for all x ∈ IRn, |x|q ≤ |x|θp|x|1−θ
r . Using Lemma 7 with

F = E0 = `n
p , E1 = `n

∞, θ = p/r, Eθ = `n
r and m = 1 we obtain

ek(id
n
p,r) ≤ 21+1/r(ek(id

n
p,∞))1−p/r

which is the announced result.
Lower estimate.

It follows from Lemma 8 (and remark after it) that

e2k(id
n
1,∞) ≤ 4(e2k(id

n
p,∞))p(e1(id

n
∞,∞))1−p.

Applying properties of entropy numbers we obtain

e2k(id
n
1,∞)1/p ≤ 41/pe2k(id

n
p,∞) ≤ 41/pek(id

n
p,r)ek(id

n
r,∞).

We deduce the lower bound for ek(id
n
p,r) combining the upper bound obtained

in the preceding part for ek(id
n
r,∞) and the well known estimate: ek(id

n
1,∞) ≥

c
√

k/ ln(1 + n/k) for these values of k.
Case 3. k > n.

This case follows from standard volume consideration. By (1) we have
em+1(id

n
r,r) ≤ 31/r′2−m/n for every m. Since

ek(id
n
p,r) ≤ en(idn

p,r)ek−n+1(id
n
r,r)

by the preceding result we obtain

ek(id
n
p,r) ≤ 2 · 61/r′

{
c1

p
ln

(
2

p

)}1/p−1/r

2−k/nn1/r−1/p.

On the other hand if N(Bn
p , εBn

r ) ≤ 2k−1 then by (1)

ε ≥

 vol
(
Bn

p

)
Nvol (Bn

r )

1/n

≥ c

√√√√min{1, r}
min{1, p}

2−k/n n1/r−1/p,

where c is an absolute positive constant. This proves the theorem. 2

Corollary 9 Let X = (IRn, ‖ · ‖) be a quasi normed space and u be a linear
operator from IRn to X. For all integers k ≤ n and m ≥ 1 one has

ek+m−1(u : `n
p → X) ≤ Cp min

{
1,
(

ln(1 + n
k
)

k

) 1
p
−1}

em(u : `n
1 → X),

where Cp ≤
(

c
p
ln
(

2
p

))1/p
for an absolute constant c > 0.

12



Remark. In some cases the estimate of em(u : `1 → X) is well known. For
example, the case of Banach space X with non-trivial type was studied in
[Pis1] and in [C].

Proof. Let u : `n
p → X and factorize it as u = v idn

p,1 where v : `n
1 → X.

By property of entropy numbers we obtain for all integers k and m

ek+m−1(u : `n
p → X) ≤ ek(id

n
p,1)em(v).

Now Corollary 9 follows from Theorem 6. 2

Remark. Repeating the argument of Theorem 6 one can get the same
upper estimate of Gelfand numbers ck(id

n
p,r) for the case 0 < p < r ≤ 2. In

particular, Corollary 9 remains true for Gelfand numbers instead of entropy
numbers.

From this entropy estimate we shall deduce a good approximation from
above for the volume of the p-convex hull of n points x1, . . . , xn in IRk as was
stated in Lemma 3.

Proof of Lemma 3. Consider the operator u : IRn → IRk defined by
u(ei) = xi for all integer i = 1, . . . , n. Let X be (IRk, ‖ · ‖), where unit ball
of ‖ · ‖ is K = absconv{x1, . . . , xn}. By the previous corollary applied with
m = 1, we have

ek(u : `n
p → X) ≤ Cp min

{
1,
(

ln(1 + n
k
)

k

) 1
p
−1}

‖u : `n
1 → X‖

= Cp min
{
1,
(

ln(1 + n
k
)

k

) 1
p
−1}

.

Clearly,

2 ek(u : `n
p → X) ≥

(vol u(Bn
p )

vol K

)1/k

.

Since u(Bn
p ) = p-absconv{x1, . . . , xn}, the result follows. 2
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[G2] O. Guédon, Sections euclidiennes des corps convexes et inégalités
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