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1 Introduction

In this paper we study geometry of compact, not necessarily centrally sym-
metric, convex bodies in Rn. Over the years, local theory of Banach spaces
developed many sophisticated methods to study centrally symmetric convex
bodies; and already some time ago it became clear that many results, if valid
for arbitrary convex bodies, may be of interest in other areas of mathematics.

In recent years many results on non-centrally symmetric convex bodies
were proved and a number of papers have been written (see e.g., [1], [8], [12],
[18], [27], [28] among others). The present paper concentrates on random
aspects of compact convex bodies and investigates some invariants funda-
mental in the local theory of Banach spaces, restricted to random sections
and projections of such bodies. It turns out that, loosely speaking, such ran-
dom operations kill the effect of non-symmetry in the sense that resulting
estimates are very close to their centrally symmetric counterparts (this is
despite the fact that random sections might be still far from being symmetric
(see Section 5 below)). At the same time these estimates might be in a very
essential way better than for general bodies.

We are mostly interested in two directions. One is connected with so-called
MM∗- estimate, and related inequalities. For a centrally symmetric convex
body K ⊂ Rn, an estimate M(K)M(K0) ≤ c log n (see the definitions in
Section 2 below) is an important technical tool intimately related to the K-
convexity constant. It follows by combining works by Lewis and by Figiel and
Tomczak-Jaegermann, with deep results of Pisier on Rademacher projections
(see e.g., [26]). Although the symmetry can be easily removed from the first
two parts, Pisier’s argument use it in a very essential way. In Section 4 we
show, in particular, that every convex body K has a position K1 (i.e., K1 =
uK − a for some operator u and a ∈ Rn) such that a random projection,
PK1, of dimension [n/2] satisfies M(PK1)M(K0

1 ) ≤ C log n, where C is
an absolute constant. Moreover, there exists a unitary operator u such that
M(K1 +uK1)M(K0

1 ) ≤ C log n. Our proof is based essentially on symmetric
considerations, a non-symmetric part is reduced to classical facts and simple
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lemmas. Similar estimates were recently proved by a different method by
Rudelson ([28]).

In Section 3 we develop some tools. We introduce the concept of random
Gelfand numbers, which formalises the phenomenon of lower estimates by
the Euclidean norm on random subspaces. Theorem 3.2 shows that, roughly
speaking, for any convex body K ⊂ Rn, good lower estimates on (non-
random) subspaces of proportional dimensions imply similar estimates valid
on random subspaces of comparable dimensions. The results of this section
are new even for centrally symmetric bodies.

Our second source of invariants is related to distances between convex
bodies. For symmetric convex bodies this theory has been much studied (see
[30] and references therein); in contrast, for non-symmetric convex bodies
very little is known in this direction (see [28] for a few recent results). In Sec-
tion 5 we consider, for example, a natural way to measure a “non-symmetry”
of a convex body, as the distance of a body to the set of all centrally sym-
metric bodies, and we investigate the behaviour of this distance for random
sections (and projections) of convex bodies. It turns out that for random pro-
jections of rank k of a simplex S ⊂ Rn, this distance can be asymptotically
estimated from below by

√
k/ lnn (Theorem 5.1). On the other hand, the

case of simplex is the worst (up to a logarithmic factor). This follows from
Theorem 5.3 related to an “isomorphic” version of Dvoretzky’s theorem ([20],
[21]).

Finally, in Section 6 we discuss the so-called proportional Dvoretzky–
Rogers factorization in the non-symmetric setting. The proof essentially fol-
lows the known symmetric argument ([29]), but it has a few delicate points
and it needs some extra work (based on [5]). An interesting standard appli-
cation says that every convex body has k-dimensional projection and section
(k = [n/2]) whose distances to `k

1 and to `k
∞, respectively, are smaller than

C
√

n (where C is an absolute constant). Another application, Theorem 6.7,
extends the proofs of “isomorphic” version of Dvoretzky’s theorem by Milman
and Schechtman ([20], [21]) to the non-symmetric case (cf. [8]).

2 Definitions and Notation

Let n be a positive integer. Denote the canonical Euclidean norm on Rn by
| · | and the Euclidean unit ball by D. Given a set A ⊂ Rn, denote the volume
of A by |A|. Given a subspace E ⊂ Rn, denote the orthogonal projection on
E by PE .

By a convex body K ⊂ Rn we shall always mean a compact convex set
with a non-empty interior, and without loss of generality, we shall assume
that 0 ∈ Int K. The gauge of K denoted by ‖ · ‖K is a positive convex
homogeneous functional; and X = (Rn, ‖ · ‖K) is an n-dimensional linear
space, corresponding to the functional. This space will be also denoted by
(Rn,K). For the Banach space notation which corresponds to the case of
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centrally symmetric convex bodies we refer the reader to [19], [26] and [30].
In particular, an operator always means a linear operator.

For an arbitrary z ∈ Int K, by Kz we denote the polar body with respect
to z, that is, Kz = {y + z | (y, x − z) ≤ 1 for all x ∈ K}. So, K0 is the
standard polar of K. Recall that for every convex body K there is a unique
point z ∈ Int K, called a Santaló point, such that |K| |Kz| ≤ |D|2. We shall
say that z ∈ Int K is an isomorphic Santaló’s point for K (with constant C),
if |K| |Kz| ≤ Cn|D|2.

Let us recall the notation connected with distances.
Given convex bodies K, L in Rn, we define the geometric distance by

d̃(K, L) = inf{α β | (1/β)L ⊂ K ⊂ αL}.

The Banach–Mazur distance is defined by

d(K, L) = inf{d̃(u(K − z), L− x) | x, z ∈ Rn;u : Rn → Rn an isomorphism}

and it corresponds to the notion of the Banach–Mazur distance in the cen-
trally symmetric case, i.e. if K and L are centrally symmetric convex bodies
then to attain the infimum in the definition it is enough to take z = x = 0.
Given convex body K in Rn and centrally symmetric convex body L in Rn

we define the distance corresponding to a center z by

dz(K, L) = inf{d̃(u(K − z), L) | u : Rn → Rn an isomorphism}.

Clearly, d(K, L) ≤ 2 inf{dz(K, L) | z ∈ Rn}. For simplicity below we will use
d(K, L) for the inf{dz(K, L) | z ∈ Rn} in the case L = −L.

For a convex body K ⊂ Rn we use shorthand notation dK = d(K, D) and
dK,z = dz(K, D) for z ∈ Rn.

Many well known definitions for centrally symmetric bodies are naturally
extended to the non-symmetric case by the same formulas. Let K ⊂ Rn be a
convex body. Recall that

M = MK = M(K) =
∫

Sn−1
‖x‖Kdν(x),

where Sn−1 denotes the Euclidean unit sphere and ν the normalized Haar
measure on Sn−1. Let M∗ = M∗

K = M∗(K) = M(K0). It is easy to check
that

M(K) ≤ M(K ∩ −K) ≤ 2M(K). (1)

Let

`(K) = E

∥∥∥∥∥
n∑

i=1

giei

∥∥∥∥∥
K

,

where gi are independent standard Gaussian random variables, and {ei} is
the canonical basis of Rn. It is well known that `(K) = cnM(K)

√
n, where

cn < 1 and cn → 1 as n −→∞.
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For a centrally symmetric convex body B ⊂ Rn the K-convexity con-
stant of (Rn, B) is denoted by κ(B). It is well known that there exists
an isomorphism u : Rn −→ Rn such that the body B̃ = u(B) satisfies
M(B̃)M(B̃0) ≤ Cκ(B) ≤ C ′ log dB , where C and C ′ are absolute constants.
(u is determined by the so-called `-ellipsoid for B, and the latter estimate is
the well-known estimate by Pisier, cf. e.g., [19], [26], [30].)

For 1 ≤ k ≤ n, by µn,k we denote the normalized Haar measure on the
Grassmann manifold Gn,k of all k-dimensional subspaces of Rn.

Let us recall the so-called “lower M∗-estimate”.

Theorem 2.1 Let K ⊂ Rn be a convex body. For every 1 ≤ k ≤ n, the set
of all subspaces E ⊂ Rn with codim E = k − 1 such that√

k/n |x| ≤ 2 M∗(K) ‖x‖K for all x ∈ E,

has measure larger than 1−exp (−α0k), where α0 > 0 is an absolute constant.

The first estimate of this type was proved by Milman ([14]) with a certain
function f(λ) replacing

√
λ on the left hand side, where λ = k/n ∈ (0, 1),

and the factor 2 replaced by an absolute constant. Then f was improved to a
polynomial by Milman ([15], [16]), and to the present form (which is asymp-
totically optimal) by Pajor and Tomczak-Jaegermann ([23]). Subsequently,
Gordon ([7]) improved the factor on the right hand side (see also [17]). The
non-symmetric case has been known for a long time and is obtained by all
the methods above.

Let us finally mention that following the practise typical for the local
theory of Banach spaces, we write most of our results in terms of convex
bodies rather than operators acting between two such bodies. Passing to the
operator language is completely standard.

3 Random Gelfand Numbers

The concept of random subspaces is fundamental in large parts of the theory.
In this paper, given a property of m-dimensional subspaces of Rn, we say
that this property is satisfied by a random m-dimensional subspace if the
measure µn,m of the subset of Gn,m of all subspaces satisfying this property
is larger than 1− exp (−α0(n−m + 1)).

For sake of generality, in the next definitions we consider arbitrary oper-
ators. Let K, L ⊂ Rn be convex bodies and let u : (Rn,K) −→ (Rn, L) be
an operator. Let 1 ≤ k ≤ n. First we recall a classical definition of Gelfand
numbers, ck(u). Let

ck(u) = inf
{

max
x∈E

‖ux‖L / ‖x‖K | E ⊂ Rn, codim E < k

}
.
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Definition 3.1 We define the k-th random Gelfand number by crk(u) =
inf a, where a > 0 is a real number such that the inequality

a > max
x∈E

‖ux‖L / ‖x‖K

is satisfied for a random subspace E of codim E = k − 1.

We shall write ck(K) and crk(K) to denote ck(id) and crk(id), respec-
tively, where id : (Rn,K) −→ (Rn, D) is the formal identity operator.

Theorem 2.1 can then be reformulated as follows.

Theorem 2.1′. Let K ⊂ Rn be a convex body. For every 1 ≤ k ≤ n we have
√

k crk(K) ≤ 2`(K0).

Let us recall a definition well-known in the symmetric case. For a convex
body K ⊂ Rn, and 1 ≤ k ≤ n, the volume number vk(K) is defined by

vk(K) = sup
{

(|PK|/|PD|)1/k | P is an orthogonal projection of rank k
}

.

Theorem 3.2 Let K ⊂ Rn be a convex body. For every 1 ≤ k ≤ n we have

√
k crk(K) ≤ C

n∑
j=m

cj(K)/
√

j,

where m = [ck], and c > 0 and C > 1 are absolute constants. Moreover, if 0
is an isomorphic Santaló point for K (with constant C ′), then we also have

n∑
j=m

cj(K)/
√

j ≤ C ′′(λ)
n∑

j=[m/2]

vj(K)/
√

j,

where λ = k/n and C ′′(λ) depends on C ′ and λ.

Proof. The moreover part in the symmetric case is (1.13) of [24]. Since this
inequality follows from Milman’s quotient-subspace theorem (see the proof in
[13]), it holds in the non-symmetric case, as long as the choice of the center
ensures the validity of Milman’s theorem. This in turn was shown in [18] and
[28] to depend on the inequality (7) below to be satisfied for K. Finally, if 0
is an isomorphic Santaló point for K, then (7) holds for K.

The first part requires an additional notation. For a convex body K ⊂ Rn

and ρ > 0, set Kρ = K ∩ ρD, and by ‖x‖ρ denote the gauge

‖x‖Kρ = max {‖x‖K , |x|/ρ}.

The following lemma is analogous to (4) of [22].
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Lemma 3.3 Let K ⊂ Rn be a convex body and let ρ = inf β, over all β such
that

µn,n−k+1

({
E | codim E = k − 1, β > max

x∈E

|x|
‖x‖β

})
≥ 1− exp(−α0k).

Then
ρ = crk(Kρ) = crk(K).

Proof. Clearly, crk(Kρ) ≤ crk(K). Write ‖ · ‖ for ‖ · ‖K , and µ for µn,n−k+1,
and let αk = 1− exp(−α0k).

Given β denote

Aβ :=
{

E | codim E = k − 1, β > max
x∈E

|x|
‖x‖β

}
and

A
′

β :=
{

E | codim E = k − 1, β > max
x∈E

|x|
‖x‖

}
.

Since A
′

β ⊂ Aβ , we have µ(A
′

β) ≤ µ(Aβ); and, by definition, for every β > ρ

if E ∈ Aβ then ‖x‖β = ‖x‖ for every x ∈ E. Therefore µ(A
′

β) = µ(Aβ). Thus,

crk(K) = inf
{

β | µ(A
′

β) ≥ αk

}
≤ inf

{
β > ρ | µ(A

′

β) ≥ αk

}
= ρ.

On the other hand for every β < ρ one has

µ

({
E | codim E = k − 1, β > max

x∈E

|x|
‖x‖ρ

})
≤ µ(Aβ) < αk,

which means crk(Kρ) ≥ ρ. �

Let us also recall the result based on the Dudley theorem (see e.g.,
[26], Chapter 5; one can easily check that the argument works in the non-
symmetric case as well). It says that if K ⊂ Rn is a convex body then

`(K0) ≤ C0

n∑
j=1

cj(K)/
√

j, (2)

where C0 > 1 is an absolute constant.

Returning to the proof of Theorem 3.2, let ρ be as in the lemma. Then
by Theorem 2.1′ and (2) one has

ρ = crk(K) = crk(Kρ) ≤
2C0√

k

n∑
j=1

cj(Kρ)/
√

j.
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Since for any j

cj(Kρ) ≤ ‖id : (Rn,Kρ) −→ (Rn, D)‖ = ρ,

we have for every m

ρ ≤ 2C0√
k

 m∑
j=1

ρ/
√

j +
n∑

j=m+1

ck(Kρ)/
√

j


≤ 4C0√

k

√
mρ +

2C0√
k

n∑
j=m+1

ck(K)/
√

j.

Choosing m = [k/(12C0)2] we complete the proof of the theorem, for appro-
priate constants c and C. �

Remark 3.4 It is well known that in centrally symmetric case C ′′(λ) in
Theorem 3.2 can be taken as c/(λ lnλ), where c is an absolute constant. In
the general case that function can be taken as c/(λ lna λ), where c and a are
absolute constants ([28]).

Theorem 3.5 Let K ⊂ Rn be a convex body such that 0 is an isomorphic
Santaló point for K (with constant C ′) and let 1 ≤ k ≤ n. For a random
subspace E with codim E = k − 1 one has

`(PEK0) ≤ C ′(λ)
n∑

j=[ck]

vj(K)/
√

j,

where c > 0 is an absolute constant, λ = k/n and C ′(λ) > 1 depends on C
and λ.

Proof. Let ρ be as in Lemma 3.3 and β ≤ 2ρ such that µn,n−k+1 (Aβ) ≥ αk,
where Aβ and αk were defined in the proof of Lemma 3.3. Then

ρ = crk(Kρ) ≤ crk(Kβ) ≤ crk(K) = ρ.

Repeating the argument of Theorem 3.2 and setting K0
β = (Kβ)0, we get

`
(
K0

β

)
≤ C0

n∑
j=1

cj(Kβ)/
√

j ≤ 4C0√
k

n∑
j=m

cj(K)/
√

j

≤ C(λ)
n∑

j=m/2

vk(K)/
√

j,

where m = [k/(24C0)2] (since β ≤ 2ρ).
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Moreover, for every E ∈ Aβ we have(
PEK0

β

)0
E

= Kβ ∩ E = K ∩ E,

where
(
PEK0

β

)0

E
denotes polar to PEK0

β with respect to the subspace E.
This means that

PEK0
β = PEK0.

Thus, by the ideal property of the `-functional we get

`
(
PEK0

)
= `

(
PEK0

β

)
≤ `

(
K0

β

)
,

which completes the proof. �

4 M M∗ Estimates for Convex Bodies

For a non-symmetric convex body the usual meaning of a position (that is,
an image of the body by a linear operator) has to be modified to reflect the
importance of the choice of the center.

Given a convex body K ⊂ Rn, we say that a body K1 is a position of K
if for some absolute constant C we have:
1. K1 = uK − a for some isomorphism u and some a ∈ Rn,
2. d0(K1, D) ≤ CdK ,
3. |K1| · |K0

1 | ≤ Cn|D|2.
From Lemmas 4.4 and 4.5 below it follows that the set of a ∈ Rn satisfying

conditions 2 and 3 is non-empty.

The main result in this section is the following theorem.

Theorem 4.1 Let K ⊂ Rn be a convex body. There exists a position K1 of K
such that for every 0 < λ < 1, a random subspace E ⊂ Rn with dim E = [λn]
satisfies

M (PE(K1 ∩ −K1)) M(K0
1 ) ≤ C(λ)κ(K −K) ≤ C ′(λ) log (1 + dK),

where C(λ) and C ′(λ) depend on λ only.

This theorem can be reformulated in a global form.

Theorem 4.1′. Let K ⊂ Rn be a convex body. There exists a position K1

of K such that, letting B = K1 ∩ −K1, there exists a unitary operator U
satisfying

M(B + UB) M(K0
1 ) ≤ Cκ(K −K),

where C > 1 is an absolute constant.
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Proof. Let E ⊂ Rn be a random [n/2]-dimensional subspace such that the
both projections P = PE and P ′ = PE⊥ satisfy the conclusion of Theo-
rem 4.1. Set U = P − P ′. Since B is a symmetric body, we clearly have
PB + P ′B ⊂ B + UB; and so M(B + UB) ≤ M(PB + P ′B). Since PB and
P ′B are contained in mutually orthogonal subspaces of Rn, the latter quan-
tity is less than or equal to 2 (M(PB) + M(P ′B)). The conclusion follows by
the choice of E. �

The above proof is modeled on an argument from [12].

Before going on, let us discuss several consequences of Theorem 4.1. The
first one means that if we pass to random subspace E of Rn then the body
K̃ = PEK satisfies the same estimate for MM∗ as in the symmetric case.
(This is despite the fact that K̃ may happen to be quite far from being
symmetric.)

Corollary 4.2 Let K ⊂ Rn be a convex body. There exists a position K1

of K such that for every 0 < λ < 1, a random subspace E ⊂ Rn with
dim E = [λn] satisfies

M(PEK1) M(K0
1 ∩ E) ≤ C(λ)κ(K −K) ≤ C ′(λ) log (1 + dK),

where C(λ) and C ′(λ) depend on λ only.

The second corollary allows to pass from a projection of a body to a
section, but in doing so we lose randomness.

Corollary 4.3 Let K ⊂ Rn be a convex body. There exists a position K1

of K such that for every 0 < λ < 1, there exists a subspace E ⊂ Rn with
dim E = [λn] such that

M(K1 ∩ E) M(K0
1 ) ≤ C(λ)κ(K −K)κ(K1 ∩ −K1) ≤ C ′(λ) log2 (1 + dK),

where C(λ) and C ′(λ) depend on λ only.

This easily follows from Theorem 4.1, by using the lifting property of the
`-functional (see Lemma 9.4 of [26] and the remark afterwards).

Corollary 4.3 was proved by a different method by Rudelson ([28], see also
[27], for the main technical step), who obtained a better dependence of C(λ)
on λ.

We now start the proof of Theorem 4.1, which requires some preparation.

Lemma 4.4 Let K ⊂ Rn be a convex body (with 0 ∈ Int K). Let z ∈ (1/2)K.
Then the polar Kz with respect to z satisfies |Kz| ≤ 2n|K0|.
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Proof. By definition

Kz − z = {y | (y, x− z) ≤ 1 for all x ∈ K}.

However if (y, x) ≤ 1 + (y, z) then ‖y‖K0 ≤ 1 + (1/2)‖y‖K0 , because z ∈
(1/2)K. That means Kz − z ⊂ 2K0 which implies the result. �

Lemma 4.5 Let K ⊂ Rn be a convex body (with 0 ∈ Int K). Let a ∈ K and
let 0 < θ < 1. Then

dK,θa ≤
(

2
θ
− 1
)

dK,a.

Proof. Denote dK,a by d. Let E be an ellipsoid centered at 0 such that a + E
⊂ K ⊂ a + dE . Clearly θa + θE ⊂ θK ⊂ K. On the other hand, since
0 ∈ K ⊂ a + dE then −a ∈ dE , hence a ∈ dE . Thus K ⊂ θa + (2 − θ)dE .
Therefore, dK,θa ≤ ((2− θ)/θ)d. �

The key ingredient of our approach is contained in the following proposi-
tion for symmetric convex bodies.

Proposition 4.6 Let B1 ⊂ B2 ⊂ Rn be symmetric convex bodies. For every
0 < λ < 1, a random subspace E ⊂ Rn with dim E = [λn] satisfies

`(PEB1) ≤ C(λ)
(
|B2|
|B1|

)c/k

`(B2),

where k = n− [λn], C(λ) depend on λ only, and c is an absolute constant.

The proof requires the definition of covering and entropy numbers. Recall
that for arbitrary subsets K1,K2 of Rn the covering number N(K1,K2) is
defined as the smallest number N such that there exist N points y1, ..., yN

in Rn satisfying

K1 ⊂
N⋃

i=1

(yi + K2).

The entropy numbers are defined by

ek(K1,K2) = inf
{
ε > 0 | N(K1, εK2) ≤ 2k−1

}
.

It is known (and easy to check) that for an arbitrary convex body K ⊂ Rn

one has vk(K) ≤ 2ek(K, D) (see e.g., [26], ch. 9).

Proof of Proposition 4.6. By Theorem 3.5 for a random subspace E ⊂ Rn

with codim E = k = n− [λn] one has

`(PEB1) ≤ C(λ)
n∑

m=[ck]

vm(B0
1)√

m
(3)
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where c is numerical constants and vm(B0
1) are the volume numbers of B0

1 .
Let ε = en(B0

2 , D) (entropy number). Since B0
2 ⊂ B0

1 and by definition of
entropy numbers we have

N := N(B0
1 , εD) ≤ N(B0

1 , B0
2)N(B0

2 , εD) ≤ 3n |B0
1 |

|B0
2 |

2n (4)

(the latter inequality follows from Lemma 4.16 of [26] and the choice of ε).
Therefore there are N points x1, ..., xN such that

B0
1 ⊂

N⋃
i=1

(xi + εD).

Thus for every projection P of rank m we get

|PB0
1 | ≤ Nεm|PD|,

which means by (4)

vm(B0
1) ≤

(
6n |B0

1 |
|B0

2 |

)1/m

en(B0
2 , D). (5)

Using Sudakov’s inequality (see e.g., Theorem 5.5 of [26]) and (3), (5) we
obtain

`(PEB1)
`(B2)

≤ C(λ)
1√

nen(B0
2 , D)

n∑
m=[ck]

(
6n|B0

1 |/|B0
2 |
)1/m

en(B0
2 , D)

√
m

≤ 4C(λ)
(
6n|B0

1 |/|B0
2 |
)1/ck

.

The result follows from the Santaló and the inverse Santaló inequalities. �

Corollary 4.7 Let K ⊂ Rn be a convex body and let a ∈ Rn be an isomorphic
Santaló point for K (with constant C ′). Let K1 = K−a. For every 0 < λ < 1,
a random subspace E ⊂ Rn with dim E = [λn], satisfies

M (PE(K1 ∩ −K1)) ≤ C(λ)M(K1 −K1), (6)

where C(λ) depends on C ′ and λ.

Proof. By Proposition 4.6 it is sufficient to show that for some absolute con-
stant C we have

|K1 −K1| ≤ Cn|K1 ∩ −K1|. (7)

This follows from the Rogers–Sheppard inequality, the definition of an
isomorphic Santaló point and the symmetric inverse Santaló inequality. �
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Remark 4.8 A global form of (6) says that there exists a unitary operator
U such that M (B + UB) ≤ CM(K1 −K1), where B = K1 ∩ −K1 and C is
an absolute constant.

Remark 4.9 Inequality (7) was obtained in [18], and in [28].

Proof of Theorem 4.1. We start with general remarks on positions of a given
convex body K ⊂ Rn. Fix an arbitrary image K2 = u(K) of K under an
operator u. Let z be the Santaló point of K2 and set K3 = K2 − z, so that
0 is the Santaló point for K3. Pick b ∈ Int K3 such that dK = dK3 = dK3,b

and set a = b/2. By Lemma 4.4, the polar Ka
3 with respect to a satisfies

(|K3| |Ka
3 |)

1/n ≤ 2|D|2/n. By Lemma 4.5, dK3,a ≤ 3dK . Now let K1 = K3−a.
Then d0(K1, D) = dK3,a ≤ 3dK and K1 is clearly a position of K. Moreover,
K1 −K1 = u(K −K).

As recalled in the introduction, for the centrally symmetric convex body
K − K there exists a linear operator u such that the body B = u(K − K)
satisfies M(B)M(B0) ≤ Cκ(B) = Cκ(K −K). Let K2 = u(K). Now, let K1

be a position of K constructed above, starting with K2.
Since B = K1 − K1, the first inequality follows immediately by Corol-

lary 4.7 and (1). Since the Banach–Mazur distance satisfies d(K −K, D) ≤
d0(K1, D) ≤ 3dK , the second estimate follows. �

5 Distances between Random Projections of Convex
Bodies

A natural way to measure a “non-symmetry” of convex bodies in Rn can be
defined as the distance from a convex body K ⊂ Rn to the set of all symmetric
bodies, which we shall denote by ∂(K). That is, ∂(K) = inf d(K, B), where
the infimum is taken over all symmetric convex bodies B ⊂ Rn (see [9] for
different ways to measure the “non-symmetry”). By compactness, there exist
a ∈ K and a symmetric convex body B ⊂ Rn such that ∂(K) = d̃(K−a,B).
Observe that we also have

∂(K) = d̃(K − a, (K − a) ∩ −(K − a))

= d̃(K − a, conv {(K − a) ∪ −(K − a)}). (8)

That is, (K−a)∩−(K−a) and conv {(K−a)∪−(K−a)} are two symmetric
bodies closest to K. Also note, that for any a ∈ K

1
2
(K −K) ⊂ conv {(K − a) ∪ −(K − a)} ⊂ K −K.

By John’s theorem, ∂(K) ≤ d(K, D) ≤ n for all K ⊂ Rn. If S is a regular
simplex in Rn, it is well known and easy to see that d(S, D) = ∂(S) = n. So
the simplex is as far as possible from being symmetric and as far as possible
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from the Euclidean ball. Let us also mention that the simplex is the only
body with the distance n to the Euclidean ball ([25]). On the other hand,
it was observed in [8] that S has a k = [(n + 1)/2]-dimensional projection
which is symmetric (in fact, it is isometric to the unit ball of `k

1). In contrast,
as our results show, orthogonal projections of S on “random” k-dimensional
subspaces are still very far from being symmetric.

Theorem 5.1 Let S be a regular simplex in Rn having 0 as the center of
mass, and let p > 1. There exist constants c > 0 and C > 0 such that for
k ≥ C · p · log n, the set of subspaces E ∈ Gn,k such that projections P = PE

satisfy

c

√
k

p · log n
≤ ∂(PS), (9)

has measure larger than 1− n−p.

Denote

A =
√

n

k

∫
Sn−1

(
k∑

i=1

x2
i

)1/2

dν (x) =
√

n Γ
(

k+1
2

)
Γ
(

n
2

)
√

k Γ
(

k
2

)
Γ
(

n+1
2

) ,

where ν is the normalized rotationally invariant measure on the Euclidean
sphere Sn−1 and Γ (·) is the Gamma function. Then A = A(n, k) < 1 and
A −→ 1 as n, k −→ ∞. We need a lemma, which follows from usual concen-
tration inequalities on the sphere (we use it in the formulation from [11]).

Lemma 5.2 There exist two constants c1 > 0 and c > 0 such that for any
N and vectors y1, ..., yN ∈ Sn−1, any ε > 0, and any integer 0 < k < n, the
set of subspaces E ∈ Gn,k such that projections P = PE satisfy

∀j :
∣∣∣|Pyj | −A

√
k/n

∣∣∣ ≤ Aε
√

k/n, (10)

has measure larger than 1− c1N exp
(
−cε2k

)
.

Proof of Theorem 5.1. Fix an arbitrary subspace E ∈ Gn,k. Using (8) it is
easy to check that

∂(PS) = inf
a∈E

d̃ (PS − a, (PS − a) ∩ −(PS − a))

= inf
a∈Rn

d̃ (P (S − a), P (S − a) ∩ −P (S − a)) .

We shall estimate from below the expression under the latter infimum, for
every a ∈ Rn.

Assume first that a = 0. Denote the vertices of the simplex by vi, with
|vi| = 1, for 1 ≤ i ≤ n + 1. Then

∑
vi = 0 and 〈vi, vj〉 = −1/n for i 6= j.
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Applying Lemma 5.2 for the set {vi − vj}n+1
i,j=0, where v0 = 0, we obtain that

with probability larger than 1− c1(n + 2)2 exp
(
−cε2k

)
A(1− ε)

√
k/n |vi − vj | ≤ |Pvi − Pvj | ≤ A(1 + ε)

√
k/n|vi − vj |

for every 0 ≤ i, j ≤ n + 1 and some absolute constants c1, c > 0.
Since for every x and y one has 2〈x, y〉 = |x|2 + |y|2 − |x − y|2, then

|vi − vj |2 = 2 + 2/n for i 6= j, and so

|〈Pvi, Pvj〉| ≤ A2 k

n

(
4ε + (1 + ε)2 /n

)
≤ A2 k

n
8ε,

for ε ∈ (1/n, 1).
Since PS = conv {Pv1, . . . , Pvn+1} and

∑
Pvi = 0, to calculate the norm

‖ − Pvn+1‖PS we clearly need to use only vectors Pvi for 1 ≤ i ≤ n, that is,

‖−Pvn+1‖PS = inf

{
n∑

i=1

λi | − Pvn+1 =
n∑

i=1

λiPvi, λi ≥ 0

}
.

However, if −Pvn+1 =
∑n

i=1 λiPvi for λi ≥ 0 then

A2 (1− ε)2
k

n
≤ |〈Pvn+1, Pvn+1〉| ≤

n∑
i=1

λi |〈Pvn+1, Pvi〉| ≤ A2 k

n
8ε

n∑
i=1

λi.

Thus we obtain ‖−Pvn+1‖PS ≥ (1− ε)2 /(8ε) with probability larger than
1− exp

(
ln (c1(n + 2)2)− ε2ck

)
. The choice

ε =

√
2p · ln (c1(n + 2)2)

ck

implies an estimate analogous to (9) for n large enough (with a different
absolute constant c). For small n the estimate is trivial.

Now let a 6= 0. Of course, it is enough to consider the case a ∈ S only. Ar-
range vertices of the simplex in such a way that a ∈ conv {0, v1, ..., vn}. Then
an obvious modification of the previous argument gives the same estimate as
for a = 0. This completes the proof. �

The estimate in Theorem 5.1 is optimal, up to a logarithmic factor. This
is a consequence of the following general upper estimate.

Theorem 5.3 Let K ⊂ Rn be a convex body such that D is the ellipsoid of
minimal volume for K. There exist constants c > 0 and C > 0 such that for
k ≥ c(M∗

K)2n, the set of subspaces E ∈ Gn,k such that projections P = PE

satisfy
d (PK, PD) ≤ Ã

√
k log n, (11)

where Ã ≤ C
√

n/(n− k), has measure larger than 1−exp(−ck)−exp(−c(n−
k)).
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By Dvoretzky’s theorem, for k ≤ c(M∗
K)2n an analogous distance is

bounded by an absolute constant.
It should be noted that Theorem 5.3 is closely related to an isomorphic

version of Dvoretzky’s theorem recently proved by Milman and Schechtman
([20], [21]) for normed spaces, and later by Gordon, Guédon and Meyer ([8])
for arbitrary convex bodies (for k ≤ n/ log n). The upper estimates proved
in these papers are better than (11) by a logarithmic factor, which is slightly
different in different ranges of k. However, except for the case of k ≤ n/ log n
([21], [8]), the proofs do not give randomness.

Before we proceed with the proof of Theorem 5.3, let us recall a convenient
notation, which will be used in the rest of this section. Given a convex body
K ⊂ Rn, let aK and bK denote the smallest real numbers for which the
inclusions hold,

(1/bK)D ⊂ K ⊂ aKD.

In particular, aK = bK0 and bK = aK0 .

Remark 5.4 In this notation Theorem 2.1 means that for every convex body
K ⊂ Rn, a projection P on a random k-dimensional subspace satisfies bPK ≤
2
√

n/(n− k) MK .

Theorem 5.3 follows from Theorem 2.1 (see the remark above) and the
following two lemmas. The first lemma is well known. In the dual form,
this is essentially an upper estimate in Dvoretzky’s theorem (valid without
restrictions that ε > 0 must be sufficiently small) see e.g., [19] (Theorem 4.2
and its proof).

Lemma 5.5 Let K ⊂ Rn be a convex body. There exist absolute constants
c > 0 and C > 0 such that for any 1 ≤ k ≤ n, the set of subspaces E ∈ Gn,k

such that projections P = PE satisfy PK ⊂ rPD, has measure larger than
1 − exp(−ck); here r = caK

√
k/n for k ≥ (M∗

K/aK)2n and r = cM∗
K for

k ≤ (M∗
K/aK)2n.

The next lemma comes from [1].

Lemma 5.6 Let K ⊂ D be a convex body such that D is ellipsoid of minimal
volume for K. Then

MK ≤ C
√

n log n,

where C is an absolute constant.

It is worth to mention that Barthe ([2]) has recently shown that the
maximal value of MK , over all convex bodies K for which D is the ellipsoid
of minimal volume, is attained for the regular simplex S. Recall that MS is
approximately equal to

√
n log n.
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Remark 5.7 If K in Rn is a body such that 0 is the Santaló point of K
(or, equivalently, 0 is the baricenter of K0) and D is the minimal volume
ellipsoid for K with such choice of origin then, using recent results of Guédon
([10], Theorems 2.2 and 2.3), the logarithmic factor in (11) can be removed.
Indeed, dual form of Theorem 3 in [12] says that a projection P on a random
k-dimensional subspace satisfies

bPK ≤ c(n/(n− k))3/2 M̃K0 where M̃L =
1
|L|

∫
L

|x|dx

for a convex body L (cf. the previous remark). Recently Guédon has shown
that if 0 is baricenter of L and D is the ellipsoid of maximal volume for
L with respect to baricenter than M̃L <

√
n ([10], Theorem 2.2). Applying

this estimate he obtained (in dual formulation) that bPK ≤ Ã0
√

n for Ã0 =
c(n/(n−k))3/2 ([10], Theorem 2.3). Combining the last estimate with Lemma
5.5 we get d(PK, PD) ≤ Ã0

√
k instead of (11).

The following theorem is a standard application of estimates from Sec-
tion 4. In the symmetric case it was proved in [4]. It shows that random
sections and random projections of convex bodies are much closer together
then it would follow from general estimates, and the distances between them
admit the same estimates as for centrally symmetric bodies.

Theorem 5.8 Let K1 and K2 be convex bodies in Rn such that 0 is an iso-
morphic Santaló point for each of them (with constant c1), and that M(Ki−
Ki)M∗(Ki −Ki) ≤ c2κ(Ki −Ki), for i = 1, 2. Let 0 < λ < 1. Then for two
random subspaces E1 and E2 with dim E1 = dim E2 = [λn] one has

d(PE1K1,K
0
2 ∩ E2) ≤ C(λ)

√
n κ(K ′

1)κ(K ′
2)

≤ C(λ)
√

n ln(1 + dK′
1
) ln(1 + dK′

2
),

where K ′
i = Ki −Ki, for i = 1, 2, and C(λ) depends on c1, c2 and λ.

Proof. We shall use the estimate that follows from Chevet’s inequality ([3],
in the symmetric case, see also [30]; and a general case follows by a standard
modification). If K and L are convex bodies in Rn, then

d(K, L0) ≤ c(aKM∗
L + aLM∗

K)(bKML + bLMK), (12)

where c is an absolute constant.
By the proof of Theorem 4.1, for two random subspaces F1 and F2 of

dimension [
√

λn] we have

M(PFiKi)M(K0
i ) ≤ C(λ)κ(Ki −Ki),

for i = 1, 2, where C(λ) depends on c1, c2 and λ.
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By Theorem 2.1, for random subspaces Ei ⊂ Fi of dimension [λn], i = 1, 2,
we have

bPiKi
≤ 3

(
1−

√
λ
)−1/2

M(PiKi),

where Pi = PEi
.

Since aPiKi ≤ c′
√

kM∗(PiKi) (where c′ is an absolute constant), then
(12) implies

d(P1K1, (P2K2)0)

≤ c(1−
√

λ)−1/2
√

kM∗(P1K1)M∗(P2K2)M(PF1K1)M(PF2K2)
≤ C ′(λ)

√
n κ(K1 −K1)κ(K2 −K2),

where C ′(λ) depends on c1, c2 and λ. This concludes the proof. �

6 The Proportional Dvoretzky–Rogers Factorization

Results of this section are completely analogous of the theorem by Bourgain
and Szarek ([5], see also [29]) for centrally symmetric convex bodies.

Theorem 6.1 Let K ⊂ Rn be a convex body, such that D is the ellipsoid of
minimal volume containing K. Let ε ∈ (0, 1) and set k = [(1 − ε)n]. There
exist vectors x1, x2, ..., xk in K, and an orthogonal projection P in Rn with
rank P ≥ k such that for all scalars t1, ..., tk

cε3

 k∑
j=1

|tj |2
1/2

≤

∥∥∥∥∥∥
k∑

j=1

tjPxj

∥∥∥∥∥∥
PK

≤ 6
ε

k∑
j=1

|tj | ,

where c > 0 is a universal constant.

Remark 6.2 For a centrally symmetric body K, the conclusion of the theo-
rem can be equivalently expressed in terms of a factorization of the identity
operator ik1,2 : `k

1 → `k
2 through K. This is no longer true for non-symmetric

bodies: the inequalities above imply the factorization of ik1,2 through PK
only.

In particular we have two immediate corollaries.

Corollary 6.3 Let K ⊂ Rn be a convex body such that D is the ellipsoid of
minimal volume containing K. For every ε ∈ (0, 1) there exist an orthogonal
projection P in Rn with k = rankP ≥ (1− ε)n and an ellipsoid D on P (Rn)
such that (ε/6)Bk

1 ⊂ PK ⊂ (C/ε3)D, where Bk
1 is the lk1 -ball corresponding

to D. By duality, there exists a subspace E ⊂ Rn with dim E ≥ k and an
ellipsoid D on E such that cε3D ⊂ K ∩ E ⊂ (6/ε)Bk

∞, where Bk
∞ is the

lk∞-ball corresponding to D.
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Corollary 6.4 Let K ⊂ Rn be a convex body such that D is the ellipsoid of
minimal volume containing K. For ε ∈ (0, 1), let k = [(1− ε)n]. Then there
exist an orthogonal projection P with rank P = k and a subspace E ⊂ Rn

with dim E = k such that the Banach-Mazur distance satisfies

max
(
d(PK, Bk

1 ), d(K ∩ E,Bk
∞)
)
≤ (C/ε4)

√
n,

where C is an absolute constant and Bk
q denotes the unit ball of `k

q .

Remark 6.5 The interest in the second corollary is that the estimates of the
distance of certain sections and projections of a (non-symmetric) convex body
to the cube and the octahedron are of the same order in n as for symmetric
bodies; and they are better than general estimates.

Remark 6.6 The second part of Corollary 6.3 immediately shows that the
proofs from [20] and [21] work in the non-centrally symmetric case as well.
Thus we have the following theorem.

Theorem 6.7 For every log n ≤ k ≤ n/2, for every convex body K in Rn

there is a k-dimensional subspace E of Rn such that dE∩K≤C
√

k/ log(1+n/k)
with an absolute constant C.

This result in the non-centrally symmetric case was shown to be valid for
k ≤ Cn/(log n)2 in [8] by a different method.

The proof of Theorem 6.1 essentially follows the argument from Szarek
and Talagrand’s paper [29], which however needs to be modified into a non-
symmetric setting.

Lemma 6.8 Let K ⊂ Rn be a compact convex body such that D is the ellip-
soid of minimal volume containing K. Let ε ∈ (0, 1). There exist k ≥ (1−ε)n
and contact points x1, x2, ..., xk of K and D such that

dist (xj , span {xi | i 6= j, 1 ≤ i ≤ k}) ≥
√

ε,

for j = 1, . . . , k.

Sketch of the proof. For sake of future reference we outline the known proof.
By John’s theorem there exist contact points x1, . . . , xm of K and D and posi-
tive scalars c1, . . . , cm which give a resolution of the identity, x=

∑
i ci(xi, x)xi

for all x ∈ Rn and
∑

i ci = n (additionally,
∑

i cixi = 0, but we shall not
use this). Then for any orthogonal projection Q with rankQ = ` one has
max1≤i≤m |Qxi| ≥ (`/n)1/2. Indeed, ` = tr Q =

∑
i ci(xi, Qxi) =

∑
i ci|Qxi|2

≤ maxi |Qxi|2
∑

i ci = n maxi |Qxi|2.
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Let k = [(1 − ε)n] + 1. For every subset σ ⊂ {1, . . . ,m} with |σ| = k,
consider Bσ = conv {±xi : i ∈ σ} and pick a subset σ0 for which the k-
dimensional volume of Bσ0 is maximal. Then for all j ∈ σ0 one has

dist (xj , span {xi | i 6= j, i ∈ σ0})
= |Qxj | = max {|Qxi| | i 6∈ σ0 or i = j} ≥

√
ε,

where Q is the orthogonal projection with kerQ = span {xi | i 6= j, i ∈ σ0}.
�

Lemma 6.9 Let δ ∈ (0, 1) and γ > 0. Let x1,..., xn in Rn satisfy

dist (xj , span {xi | i 6= j}) ≥ γ,

for j = 1, . . . , n. Then there exists a subset σ ⊂ {1, ..., n} with |σ| ≥ (1− δ)n
and such that for all scalars t1, ..., tn∣∣∣∣∣∣

∑
j∈σ

tjxj

∣∣∣∣∣∣ ≥ cγδ

∑
j∈σ

|tj |2
1/2

,

where c > 0 is an absolute constant.

This was proved in [29], as a combination of Proposition 4 and the argu-
ment from the proof of Corollary 5. The dependence of the right hand side
on γ and δ was shown in the Proposition and Theorem 2 of [6].

The final lemma is taken from [5] (Lemma C), and for the sake of com-
pleteness we provide a short proof.

Lemma 6.10 Let x1, . . . , xm ∈ Rn satisfy |
∑

tjxj | ≥ (
∑
|tj |2)1/2 for all

scalars (tj). Let α ∈ (0, 1) and let P be an orthogonal projection in Rn

with corankP ≤ αm. Then for every α < δ < 1 there exists a subset
σ ⊂ {1, . . . ,m}, with |σ| ≥ (1− δ)m such that for all scalars (ti),∣∣∣∣∣∣

∑
j∈σ

tjPxj

∣∣∣∣∣∣ ≥ c(δ − α)3/2

∑
j∈σ

|tj |2
1/2

,

where c > 0 is an absolute constant.

Sketch of the proof. Similarly as in [5], without loss of generality we may
assume that n = m and the vectors (xi) are the standard unit vectors (ei) in
Rm. Thus we obtain the resolution of the identity in the space E = P (Rm),
x =

∑
(Pei, x)Pei for x ∈ E. We have k = dim E ≥ (1 − α)m. Let

δ′ = (α + δ)/2. By the proof of Lemma 6.8, there exists a subset σ′ with
` = |σ′| ≥ k − (δ′ − α)k ≥ (1 − δ′)m such that for all j ∈ σ′ we have
dist (Pej , span {Pei | i 6= j, i ∈ σ′}) ≥

√
δ′ − α.
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Therefore by Lemma 6.9, there exists a subset σ ⊂ σ′, with |σ| ≥ `− (δ−
δ′)` ≥ (1− δ)m such that∣∣∣∣∣∣

∑
j∈σ

tjPej

∣∣∣∣∣∣ ≥ c(δ′ − α)1/2(δ − δ′)

∑
j∈σ

|tj |2
1/2

,

which immediately concludes the proof. �

Remark 6.11 The conclusion of Lemma 6.10 holds as well if the assumption
on the vectors (xi) is replaced by the condition that the vectors give the
John’s resolution of the identity: Let m ≥ n and let xi ∈ Rn, with |xi| = 1,
and ci > 0, for i = 1, . . . ,m satisfy x =

∑
i ci(xi, x)xi for all x ∈ Rn and∑

i ci = n. This follows from a similar proof as above, preceded with a slightly
modified argument as in the proof of Lemma 6.8.

Proof of Theorem 6.1. Let D be the ellipsoid of minimal volume for K. By
Lemma 6.8 there exist n ≥ k ≥ (1 − ε/3)n and contact points x1, . . . , xk of
K and D that satisfy the conclusion of the lemma with the lower estimate√

ε/3. Thus, by Lemma 6.9, there exists a subset σ′ ⊂ {1, . . . , k} with m =
|σ′| ≥ k − (ε/3)k ≥ (1 − 2ε/3)n that the lower `2-estimate of the lemma is
satisfied with the function c′ε3/2, where c′ > 0 is an absolute constant.

It is not difficult to construct, for an arbitrary β ∈ (0, 1), an orthogonal
projection P with corankP = [βm] such that −Pxj ∈ β−1PK for every
j ∈ σ′. Indeed, partition the set σ′ into [βm] disjoint subsets As, with |As| ≤
[1/β]+1 for all s. Let zs =

∑
i∈As

xi, and let P be the orthogonal projection
with kerP = span {zs}. Since Pzs = 0, then −Pxj ∈ [1/β] conv {Pxi : i 6=
j, i ∈ As}, for all j ∈ As and all s. Thus P is an orthogonal projection of
corank [βm] such that −Pxj ∈ [1/β]PK, for all j ∈ σ′.

Let β = ε/6 and let P be the corresponding orthogonal projection. Then,
by Lemma 6.10, with α = ε/6 and δ = ε/3 we get a set σ ⊂ σ′, |σ| ≥
m− (ε/3)m ≥ (1− ε)n such that for all scalars (ti),∣∣∣∣∣∣

∑
j∈σ

tjPxj

∣∣∣∣∣∣ ≥ cε3

∑
j∈σ

|tj |2
1/2

,

where c > 0 is a universal constant. Since |σ| ≥ k, by relabelling vectors xj

we get the left hand side of the required inequality:∥∥∥∥∥∥
k∑

j=1

tjPxj

∥∥∥∥∥∥
PK

≥

∣∣∣∣∣∣
k∑

j=1

tjQxj

∣∣∣∣∣∣ ≥ cε3

 k∑
j=1

|tj |2
1/2

.

The right hand side is obvious from the triangle inequality, since letting
B = PK ∩ (−PK) we get a convex centrally symmetric body in P (Rn), and
‖Pxj‖PK ≤ ‖Pxj‖B ≤ 6/ε, for all j ∈ σ. �
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