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Abstract

Let A be an n × n random matrix with i.i.d. entries of zero mean, unit vari-
ance and a bounded subgaussian moment. We show that the condition number
smax(A)/smin(A) satisfies the small ball probability estimate

P
{
smax(A)/smin(A) ≤ n/t

}
≤ 2 exp(−ct2), t ≥ 1,

where c > 0 may only depend on the subgaussian moment. Although the estimate
can be obtained as a combination of known results and techniques, it was not
noticed in the literature before. As a key step of the proof, we apply estimates
for the singular values of A, P

{
sn−k+1(A) ≤ ck/

√
n
}
≤ 2 exp(−ck2), 1 ≤ k ≤ n,

obtained (under some additional assumptions) by Nguyen.
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1 Introduction

We say that a random variable ξ has subgaussian moment bounded above by K > 0 if

P{|ξ| ≥ t} ≤ exp
(
1− t2/(2K2)

)
, t ≥ 0.

Let A be an n × n random matrix with i.i.d. entries of zero mean, unit variance and
subgaussian moment bounded above by K, and denote by si(A), 1 ≤ i ≤ n, its singular
values arranged in non-increasing order. We will write smax(A) and smin(A) for s1(A) and
sn(A), respectively. Estimating the magnitude of the condition number,

κ(A) = smax(A)/smin(A),

is a well studied problem, with connections to numerical analysis and computation of the
limiting distribution of the matrix spectrum; we refer, in particular, to [20] for discussion.
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Since the largest singular value smax(A) is strongly concentrated (see the proof of Corol-
lary 1.2 below), estimating κ(A) is essentially reduced to estimating smin(A) from above
and below.

The main result of [12] provides small ball probability estimates for smin(A) of the
form

P
{
smin(A) ≤ t/

√
n
}
≤ Ct+ e−cn, t ≤ 1,

for some C, c > 0 depending only on the subgaussian moment. It seems natural to
investigate the complementary regime — the large deviation estimates for smin(A). It was
shown in [13] that

P
{
smin(A) ≥ t/

√
n
}
≤ C ln t

t
+ e−cn, t ≥ 2

(see also [21] for an extension of this result to distributions with no assumptions on
moments higher than 2). The probability estimate was improved in [10] to

P
{
smin(A) ≥ t/

√
n
}
≤ e−ct, t ≥ 2,

for c > 0 depending only on the subgaussian moment. The existing results on the distribu-
tion of the singular values of random Gaussian matrices [4, 18] suggest that the optimal
dependence on t in the exponent on the right hand side is quadratic, i.e. the variable√
n smin(A) is subgaussian. Specifically, it is shown in [18] that smin(G) for the standard

n× n Gaussian matrix G satisfies two-sided estimates

exp(−Ct2) ≤ P
{
smin(G) ≥ t/

√
n
}
≤ exp(−ct2), t ≥ C1,

where C,C1, c > 0 are some universal constants. The main result of our note provides
matching upper estimate for matrices with subgaussian entries:

Theorem 1.1. Let A be an n × n random matrix with i.i.d. entries of zero mean, unit
variance, and subgaussian moment bounded above by K > 0. Then the smallest singular
value smin(A) satisfies

P
{
smin(A) ≥ t/

√
n
}
≤ 2 exp(−ct2), t ≥ 1,

where c > 0 is a constant depending only on K.

As a simple corollary of the theorem, we obtain small ball probability estimates for
the condition number:

Corollary 1.2. Let A be an n × n random matrix with i.i.d. entries of zero mean, unit
variance, and subgaussian moment bounded above by K > 0. Then the condition number
κ(A) satisfies

P
{
κ(A) ≤ n/t

}
≤ 2 exp(−ct2), t ≥ 1,

where c > 0 is a constant depending only on K.

Theorem 1.1 is a consequence of the following theorem, which is of independent inter-
est.
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Theorem 1.3. Under conditions of Theorem 1.1 one has

P
{
‖A−1‖HS ≤ min(n/t,

√
n/t)

}
≤ 2 exp(−ct2), t ≥ 0,

where c > 0 is a constant depending only on K.

The proof of Theorem 1.3 uses, as a main step, the estimates

P
{
sn−k+1(A) ≤ ck/

√
n
}
≤ 2 exp(−ck2), 1 ≤ k ≤ n,

for the singular values of the matrix A. These estimates, based on the restricted invert-
ibility of matrices and certain averaging arguments, were recently obtained by Nguyen [9]
under some additional assumptions (which will be discussed in the next section).

2 Preliminaries

Given a matrix A, it singular values si = si(A), i ≥ 1, are square roots of eigenvalues
of AA∗. We always assume that s1 ≥ s2 ≥ . . . By ‖A‖ and ‖A‖HS we denote the
operator `2 → `2 norm of A (also called the spectral norm) and the Hilbert–Schmidt
norm respectively. Note that

‖A‖ = s1 and ‖A‖2HS =
∑
i≥1

s2i .

The columns and rows of A are denoted by Ci(A) and Ri(A), i ≥ 1, respectively. Given
J ⊂ [m], the coordinate projection in Rm onto RJ is denoted by PJ . For convenience, we
often write AJ instead of APJ . Given m ≥ 1, the identity operator R` → R` we denote
by Im. Given x, y ∈ Rn by 〈x, ·〉 y we denote the operator z 7→ 〈x, z〉 y (in the literature
it is often denoted by x⊗ y or yx>). The canonical Euclidean norm in Rm is denoted by
‖ · ‖2 and the unit Euclidean sphere by Sm−1.

As the most important part of our argument, we will use the following result.

Theorem 2.1. Let A be an n × n random matrix with i.i.d. entries of zero mean, unit
variance, and subgaussian moment bounded above by K > 0. Then for any 1 ≤ k ≤ n
one has

P
{
sn−k+1(A) ≤ ck/

√
n
}
≤ 2 exp(−ck2),

where c > 0 is a constant depending only on K.

The above theorem, up to some minor modifications, was proved by Nguyen in [9].
Specifically, in the case k ≥ C log n, the theorem follows from [9, Theorem 1.7] (or [9,
Corollary 1.8]) if one additionally assumes either that the entries of A are uniformly
bounded by a constant, or that the distribution density of the entries is bounded. Re-
moving these conditions requires a minor change of the proof in [9]. Further, in the case
k ≤ C log n, the above result (in fact, in a stronger form) is stated as formula (4) in [9,
Theorem 1.4]. However, [9, Theorem 3.6], which is used to derive [9, formula (4)], provides
a non-trivial probability estimate only for the event {sn−k+1(A) ≤ cγk

1−γ/
√
n} (for any

given γ ∈ (0, 1) and cγ depending on γ), see [9, formula (31)]. Again, a minor update of
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the argument of [9] provides the result needed for our purposes. In view of the above and
for the reader’s convenience, we provide a proof of Theorem 2.1 in the last section.

The following result was proved in [17] as an extension of the classical Bourgain–
Tzafriri restricted invertibility theorem [2]. With worse dependence on ε, the theorem
was earlier proved in [22]. See also a recent paper [8] for further improvements and
discussions.

Theorem 2.2 ([17]). Let T be n×n matrix. Then for any ε ∈ (0, 1) there is a set J ⊂ [n]
such that

` := |J | ≥
⌊
ε2‖T‖2HS
‖T‖2

⌋
and s`(TJ) ≥ (1− ε)‖T‖HS√

n
.

We will use two following results by Rudelson–Verhsynin. The first one was one
of the key ingredients in estimating the smallest singular value of rectangular matrices.
The second one is an immediate consequence of the Hanson–Wright inequality [5, 23]
generalized in [15].

Theorem 2.3 ([14], Theorem 4.1). Let X be a vector in Rn, whose coordinates are i.i.d.
mean-zero, subgaussian random variables with unit variance. Let F be a random subspace
in Rn spanned by n − ` vectors, 1 ≤ ` ≤ c′n, whose coordinates are i.i.d. mean-zero,
sub-Gaussian random variables with unit variance, jointly independent with X. Then, for
every ε > 0, one has

P
{

dist(X,F ) ≤ ε
√
`
}
≤ (Cε)` + exp(−cn).

where C > 0, c, c′ ∈ (0, 1) are constants depending only on the subgaussian moments.

Theorem 2.4 ([15, Corollary 3.1]). Let X be a vector in Rn, whose coordinates are i.i.d.
mean-zero random variables with unit variance and with subgaussian moment bounded by
K. Let F be a fixed subspace in Rn of dimension n− `. Then, for every t > 0, one has

P
{
|dist(X,F )−

√
`| ≥ t

}
≤ 2 exp(−ct2/K4).

where c > 0 is an absolute constant.

We will also need the following standard claim, which can be proved by integrating
the indicator functions (see e.g., [9, Claim 3.4], cf. [6, Claim 4.9]).

Claim 2.5. Let α, p ∈ (0, 1). Let E be an event. Let Z be a finite index set, and {Ez}z∈Z
be a collection of |Z| events satisfying P(Ez) ≤ p for every z ∈ Z. Assume that at least
α|Z| of events Ez hold whenever the event E occurs. Then P(E) ≤ p/α.

3 Proofs of main results

Proof of Theorem 1.1. In the case t > n we have

P
{
smin(A) ≥ t/

√
n
}

= P
{
s1(A

−1) ≤
√
n/t
}
≤ P

{ n∑
i=1

si(A
−1)2 ≤ n2/t2

}
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and the result follows from Theorem 1.3.
Now we consider the case 1 ≤ t ≤ n. Let L ≥ 1 be a parameter which we will choose

later. Then

P
{
smin(A) ≥ t/

√
n
}

= P
{
s1(A

−1) ≤
√
n/t
}

≤ P
{
s1(A

−1)2 ≤ n/t2 and
∑
i≥dte

si(A
−1)2 ≥ Ln/t

}
+ P

{
s1(A

−1)2 ≤ n/t2 and
∑
i≥dte

si(A
−1)2 < Ln/t

}
≤ P

{∑
i≥dte

si(A
−1)2 ≥ Ln/t

}
+ P

{ n∑
i=1

si(A
−1)2 ≤ n/t+ Ln/t

}
.

For the first summand in the last expression, we apply Theorem 2.1. Since
∑∞

i=btc
1
i2
≤ 2

t
,

we obtain

P
{ n∑
i=dte

si(A
−1)2 ≥ Ln/t

}
≤

n∑
i=dte

P
{
si(A

−1)2 ≥ Ln/(2i2)
}

=
n∑

i=dte

P
{
sn−i+1(A) ≤

√
2i/
√
Ln
}
.

Choosing L so that
√

2/L is equal to the constant from Theorem 2.1, we get

n∑
i=btc

P
{
sn−i+1(A) ≤

√
2i/
√
Ln
}
≤ 2

n∑
i=btc

exp(−ci2) ≤ 3 exp(−c′t2)

for some c′ > 0 depending only on K. The bound on the second summand follows from
Theorem 1.3 applied with t/(L+ 1) instead of t. This completes the proof.

Proof of Corollary 1.2. Theorem 2.4 implies that there exists an absolute constant c1 > 0
depending only on K such that for every i ≤ n

P(‖Ci(A)‖2 ≤
√
n/2) ≤ exp(−c1n)

(this can be shown by direct calculations as well, see e.g. Fact 2.5 in [7]). Since the entries
of A are independent, we obtain

P(‖A‖ ≤
√
n/2) ≤

n∏
i=1

P(‖Ci(A)‖2 ≤
√
n/2) ≤ exp(−c1n2).

Note that if ‖A‖ ≥
√
n/2 and κ(A) ≤ n/2t then sn(A) = ‖A‖/κ(A) ≥ t/

√
n. Therefore,

by Theorem 1.1,
P{κ(A) ≤ n/2t} ≤ 2 exp(−ct2) + exp(−c1n2).

By adjusting constants, this implies the conclusion for t ≤ n. Since κ(A) ≥ 1, the case
t > n is trivial.
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Proof of Theorem 1.3. Adjusting the constant in the exponent if needed, without loss of
generality, we assume that t ≥ C0, where C0 > 0 is a large enough constant depending
only on K. Denote

E0 :=

{ n∑
i=1

si(A
−1)2 ≤ n/t

}
.

We first consider the case t ≤ n. Applying the negative second moment identity (see
e.g. Exercise 2.7.3 in [19]),

n∑
i=1

si(A
−1)2 =

n∑
i=1

dist
(
Ci(A), span{Cj(A), j 6= i}

)−2
,

we observe that on the event E0,∣∣{i ≤ n : dist
(
Ci(A), span{Cj(A), j 6= i}

)
≥
√
t/2
}∣∣ ≥ n/2.

For each subset I ⊂ [n] of cardinality k ≤ n/2 (the actual value of k will be defined later),
let 1I be the indicator of the event{

dist
(
Ci(A), span{Cj(A), j ∈ [n] \ I}

)
≥
√
t/2 for all i ∈ I

}
.

Then, in view of the above, everywhere on the event E0 we have

∑
I⊂[n], |I|=k

1I ≥
(
dn/2e
k

)
≥
(
n

2k

)k
≥ (2e)−k

(
n

k

)
.

Hence, by Markov’s inequality and permutation invariance of the matrix distribution,

P(E0) ≤ (2e)k E1[k].

As the last step of the proof, we estimate the expectation of 1[k] (with a suitable choice
of k). In view of independence and equidistribution of the matrix columns, we have

E1[k] =
(
P
{

dist
(
C1(A), span{Cj(A), j ∈ [n] \ [k]}

)
≥
√
t/2
})k

.

Choose k := bt/4c ≤ n/2 and denote

D := dist
(
C1(A), span{Cj(A), j ∈ [n] \ [k]}

)
.

Using independence of columns of the matrix A and applying Theorem 2.4 with ` = k
and F = span{Cj(A), j ∈ [n] \ [k]}, we obtain

P
{
D ≥

√
t/2
}
≤ P

{
D −

√
k ≥ (

√
2− 1)

√
t/4
}
≤ 2 exp(−c̄ t)

for some c̄ > 0 depending only on K. Hence,

P(E0) ≤ (2e)k 2k exp(−c̄ t k) ≤ exp(−c̄t2/16),
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provided that t is larger than a certain constant depending only on K. This implies the
desired result for t ≤ n.

In the case t > n we essentially repeat the argument along the same lines. Define

E ′0 :=

{ n∑
i=1

si(A
−1)2 ≤ n2/t2

}
.

Observe that on the event E ′0,∣∣{i ≤ n : dist
(
Ci(A), span{Cj(A), j 6= i}

)
≥ t/
√

2n
}∣∣ ≥ n/2.

Repeating the above computations with the same notation and with k = bn/4c we obtain

P
{
D ≥ t/

√
2n
}
≤ P

{
D −

√
k ≥ t/(5

√
n)
}
≤ 2 exp(−c̄ t2/n),

which leads to
P(E ′0) ≤ (2e)k 2k exp(−c̄ kt2/n) ≤ exp(−c̄t2/16),

provided that t > Cn for large enough C depending only on K. For n < t ≤ Cn the
result follows by adjusting the absolute constants.

4 Small ball estimates for singular values

The goal of this section is to prove Theorem 2.1. As we have noted, the argument
essentially reproduces that of [9]. An important part of the proof is the use of restricted
invertibility (see also [3] and [11] for some recent applications of restricted invertibility in
the context of random matrices).

We will use a construction from [9]. Given an integer k and an n×n matrix A define a
k×n matrix Z = Z(A, k) in the following way. Consider singular value decomposition A =∑n

i=1 si 〈vi, ·〉wi, where si = si(A) are singular values of A (arranged in non-increasing
order) and {vi}i, {wi}i are two orthonormal systems in Rn. For i ≤ k denote zi = vn−i+1.
Let Z be the matrix whose rows are Ri(Z) = zi. Clearly, the rows of Z are orthonormal
and for every i ≤ k,

‖Azi‖2 = sn−i+1 ≤ sn−k+1. (1)

Moreover,
‖Z‖ = 1 and ‖Z‖HS =

√
k.

The matrix Z is not uniquely defined when some of the k smallest singular values of A
have non-trivial multiplicity; we will however assume that for each realization of A, a
single admissible Z is chosen in such a way that Z is a (measurable) random matrix.
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4.1 Proof of Theorem 2.1, the case k ≥ lnn

Let C, c, c′ be constants from Theorem 2.3. Let γ =
√
c′. Note that C, c, c′, γ depend only

on K. Let Z = Z(A, k) be the k × n matrix constructed above. Applying Theorem 2.2
to Z (one can add zero rows to make it an n× n matrix), there exists J ⊂ [n] such that

|J | = ` := bγ2k
⌋
≤ c′k and s`(ZJ) ≥ (1− γ)

√
k/n.

Fix a (small enough, depending on K) constant c0 > 0. Define the event

Ek :=
{
sn−k+1(A) ≤ c0k/

√
n
}
.

Consider the n × k matrix B = AZ>. Using property (1), on the event Ek, we have for
every i ≤ k,

‖Ci(B)‖2 = ‖Azi‖2 ≤ c0k/
√
n,

hence ‖B‖HS ≤ c0k
3/2/
√
n. Now, since s`(ZJ) > 0, there exists a k × ` matrix M such

that Z>J M = I`. Then

‖M‖ = 1/s`(Z) ≤ (1− γ)−1
√
n/k.

Therefore,
‖BM‖HS ≤ ‖B‖HS ‖M‖ ≤ c0(1− γ)−1k.

Writing B = AJ(ZJ)>+AJc(ZJc)>, we also have BM = AJ +AJc(ZJc)>M . Next denote

F = F (A, J) := span{Ci(AJc)}i∈Jc ,

and let P be the orthogonal projection on F⊥. Then, on the event Ek,

c20(1− γ)−2k2 ≥ ‖PBM‖2HS ≥ ‖PAJ‖2HS =
∑
i∈J

‖P Ci(AJ)‖22 =
∑
i∈J

dist2(Ci(A), F ).

Therefore, for at least `/2 indices i ∈ J , one has

dist(Ci(A), F ) ≤
√

2c0(1− γ)−1k/
√
` ≤ 2c0

√
`/((1− γ)γ2).

Note that the subspace F is spanned by n−` random vectors, it is independent of columns
Ci(A), i ∈ J , and that columns of A are independent. Therefore, by Theorem 2.3 and
the union bound we obtain

P(Ek) ≤
∑
J⊂[n]
|J|=`

∑
J1⊂J
|J|=d`/2e

P
{
∀i ∈ J1 dist(Ci(A), F ) ≤ 2c0

√
`/((1− γ)γ2)

}

≤
(
n

`

)
2`
(
(2Cc0/((1− γ)γ2))` + exp(−cn)

)`/2
≤

(
4en

`
max

{( √
2Cc0

γ
√

1− γ

)`
, exp(−cn/2)

})`

Choosing small enough c0 and using k ≥ lnn, we obtain P(Ek) ≤ exp(−c3`2), where c3 > 0
depends only on K. By adjusting constants this proves the desired result for k ≥ lnn.
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4.2 Proof of Theorem 2.1, the case k ≤ lnn

Let A be as in Theorem 2.1. It is well known (see e.g. Fact 2.4 in [7]) that there is an
absolute constant C1 > 0 such that

P
{
‖A‖ ≤ C1K

√
n
}
≥ 1− e−n. (2)

Let Ebd denote the event from this equation. Further, from [16, Theorem 1.5] one infers
that for any γ > 0 there are γ1, γ2, γ3 > 0 depending only on γ and K such that, denoting

Einc(γ) :=
{
∀x ∈ Sn−1 with ‖Ax‖2 ≤ γ1

√
n, ∀I ⊂ [n]

with |I| ≥ γn one has ‖PIx‖2 ≥ γ2
}
,

the event satisfies
P(Einc(γ)) ≥ 1− 2e−γ3n. (3)

The following statement was proved by Nguyen ([9, Corollary 3.8]).

Proposition 4.1. For any K > 0 there are C, c1, c2, γ > 0 depending only on K with the
following property. Let A be an n×n random matrix with i.i.d. entries of zero mean, unit
variance, and subgaussian moment bounded above by K. Let 2 ≤ k ≤ n/(C lnn), and let
the random k× n matrix Z = Z(A, k) be defined as above. Then everywhere on the event{
sn−k+1(A) ≤ c1k/

√
n
}
∩ Einc(γ) ∩ Ebd one has∣∣{J ⊂ [n] : |J | = bk/2c, sbk/2c(ZJ) ≥ c1

√
k/n

}∣∣ ≥ ck ln k2 nbk/2c.

Now assume that k ≤ lnn. Without loss of generality we may also assume that k
is bounded below by a large constant. Let C, c, c′ be constants from Theorem 2.3 and
c1, c2, γ from Proposition 4.1. Fix for a moment any realization of A from the event{
sn−k+1(A) ≤ c0k/

√
n
}
∩ Einc(γ) ∩ Ebd, where c0 ∈ (0, c1] will be chosen later. Let

` := bk/2c and

J :=
{
J ⊂ [n] : |J | = bk/2c, sbk/2c(ZJ) ≥ c1

√
k/n

}
.

Fix J ∈ J and repeat the procedure used in Subsection 4.1 with J and `. We obtain that
for at least `/2 indices i ∈ J , one has

dist(Ci(A), F ) ≤
√

2c0k/(c1
√
`) ≤ 4c0

√
`/c1, (4)

where F = span{Ci(AJc)}i∈Jc . For any fixed subset J ⊂ [n] of cardinality ` consider the
event

EJ :=
{

for at least `/2 indices i ∈ J inequality (4) holds
}
.

Applying Theorem 2.3 and the union bound we observe

P(EJ) ≤ 2`
(
(4c0C/c1)

` + exp(−cn)
)`/2 ≤ (4 max

{
(4c0C/c1)

` , exp(−cn)
})`/2

.

Choosing c0 to be small enough we obtain that P(EJ) ≤ exp(−c4k2), where c4 > 0 depends
only on K. Combining this with Claim 2.5 and Proposition 4.1 we obtain

P
({
sn−k+1(A) ≤ c0k/

√
n
}
∩ Einc(γ) ∩ Ebd

)
≤ c−k ln k2 exp(−c4k2) ≤ exp(−c5k2)
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provided that k ≥ C2, where C2 ≥ 1 ≥ c5 > 0 are constants depending on on K only. By
(2) and (3) this completes the proof in the case k ≤ lnn.
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