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Abstract

We discuss when a generic subspace of some fixed proportional dimension of a finite-

dimensional normed space can be isomorphic to a generic quotient of some proportional

dimension of another space. We show (in Theorem 4.1) that if this happens (for some natural

random structures) then for any proportion arbitrarily close to 1, the first space has a lot of

Euclidean subspaces and the second space has a lot of Euclidean quotients.

r 2003 Elsevier Inc. All rights reserved.

0. Introduction

In the paper [BM1], Bourgain and Milman studied Banach–Mazur distances
between finite-dimensional normed spaces, their subspaces and quotients. In
particular they proved that given any two normed spaces X and Y ; for a large set
of (proportional dimensional) subspaces of X and a large set of quotients of Y ; the

distance between any two representatives is less than or equal to c
ffiffiffi
n

p
ðlog nÞ2; where c
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depends on the proportion only. In fact, these sets of subspaces and quotients have
(Haar) measure close to 1, as subsets of Grassman manifolds naturally determined
by the spaces X and Y : This result should be compared to the result of Gluskin [Gl]
which says that for a large set of (proportional dimensional) subspaces of cn

N
; the

distance between two distinct subspaces is larger than or equal to cn; where c40 is
an absolute constant. It was then observed in [BM1] that ‘‘random’’ subspaces and
‘‘random’’ quotients are not of the same nature, and should have some very different
properties.
The present paper answers a vaguely put question from [BM1] and opens a new

direction in understanding of what ‘‘random’’ subspaces and ‘‘random’’ quotients
are. We consider a critical case and we show that if, for some specific random
structure (described below), a generic subspace of some fixed proportional dimension
is isomorphic (essentially the same) to a generic quotient of some proportional
dimension of another space (with a similarly selected random structure) then for any

proportion arbitrarily close to 1, the first space has a lot of Euclidean subspaces and
the second space has a lot of Euclidean quotients. So a complete similarity between a
generic subspace and a generic quotient implies that most subspaces (respectively,
quotients) are Euclidean.
Of course, the notion of randomness is crucially important and we introduce and

discuss the corresponding Euclidean structure in Section 3. Just to describe our
general point of view, for an arbitrary n-dimensional normed space X and an
arbitrary so-called M-ellipsoid on X (see Section 3 for the definition), we identify X

with Rn in such a way that the ellipsoid becomes the standard Euclidean ball. Then
for every 0olo1 we define a certain subset FJlnnðBX Þ of the Grassman manifold

Gn;Jlnn of all Jlnn-dimensional subspaces of Rn; depending on X ; whose (Haar)

measure is exponentially close to 1. Our main result (Theorem 4.1) says that if
K ;LCRn are the unit balls of two n-dimensional spaces X and Y with the above
identification, and for some 0olo1 and some d41 there exist EAFJlnnðKÞ and
FAFJlnnðLÞ such that the Banach–Mazur distance satisfies

d ðF ;L-FÞ; ðE;QEKÞð Þpd;

then the volume ratio of Y and the outer volume ratio of X are both bounded by a
function depending on l and d only. Here ðF ;L-FÞ denotes the space F with the
unit ball L-F (which makes it into a subspace of Y ) and similarly for ðE;PEKÞ;
where PE is the orthogonal projection onto E; which makes it into a quotient of X :
Let us also recall for non-specialists, that the condition of bounded volume ratio
implies the existence of a large family of Euclidean subspaces of proportional
dimension (for any proportion less than 1), and dually, the boundedness of the outer
volume ratio is similarly related to Euclidean quotients.
The proof of the main theorem is based upon some new properties of the minimal

and maximal volume ellipsoids which are described in Section 2. In our opinion,
these properties should play a role in the theory for many other problems as well,
and should be independently noted.
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It is well known that every ‘‘local’’ fact in the asymptotic theory (which means a
fact about subspaces or quotients) corresponds to some global statement, about the
body in the whole space, without a reduction of dimension. It also often happens
that some of the facts are very non-trivial but others are very easy. In our case the
global analogies are easy, nevertheless they are presented in the second part of
Section 4 (Theorem 4.6 and before) to complete the picture.
In order to keep our arguments relatively transparent we did not make an attempt

to get the dependence of constants in our inequalities on appropriate parameters
asymptotically sharpest possible. Stronger quantitative forms of our results as well as
their versions for non-symmetric and p-convex cases will be presented in the
forthcoming paper [LMT].

1. Basic notations

We consider Rn with the standard Euclidean structure and the Euclidean unit ball
denoted by B2: The canonical Euclidean norm on Rn is denoted by j � j; and the
corresponding inner product by /�; �S: We shall also consider other Euclidean
structures on Rn; with the unit balls given by ellipsoids.
By a body we mean a compact set with a non-empty interior. We shall call a

convex body symmetric if it is centrally symmetric. For a symmetric convex body K

in Rn the polar body K0 is defined by

K0 :¼ fxARnj j/x; ySjp1 for every yAKg:

We recall that for every subspace E of Rn the polar (in E) of K-E is PEK0; where
PE is the orthogonal projection onto E:
The n-dimensional volume of a body K in Rn is denoted by jK j: For a symmetric

convex body KCRn we shall occasionally use the notation jj � jjK for the Minkowski

functional of K : The normed space ðRn; jj � jjKÞ will be also denoted by ðRn;KÞ: If
LCRm is another symmetric convex body and T :Rn-Rm is a linear operator, by
jjT : K-Ljj we shall denote the operator norm of T from ðRn;KÞ to ðRm;LÞ: If
m ¼ n; the geometric distance between K and L is defined by

dgðK ;LÞ :¼ inffb=a j a40; b40; aKCLCbKg:

If dgðK ;LÞpC then we say that K and L are C-equivalent. The Banach–Mazur

distance between K and L is defined by

dðK ;LÞ :¼ inffdgðK ;TLÞg;

where the infimum is taken over all invertible linear operators T from Rn to Rn: The
Banach–Mazur distance between normed spaces is the Banach–Mazur distance
between their unit balls. If the Banach–Mazur distance between a space and the
Euclidean space is bounded by C we say that the space is C-Euclidean.
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For a real number a40; by Jan we denote the smallest integer larger than or
equal to a:

Given an ellipsoid E on Rn; by GE
n;k for 1pkpn we shall denote the Grassman

manifold of k-dimensional linear subspaces of Rn equipped with the normalized

Haar measure mEn;k determined by the Euclidean structure given by E: If E ¼ B2 we

shall write Gn;k and mn;k instead of GE
n;k; and mEn;k: We say that some property holds

for a random orthogonal (in E) projection of rank k whenever the measure of the set

of all subspaces EAGE
n;k for which PE has the property, is larger than 1
 expðckÞ for

some absolute constant c40:

For a symmetric convex body KCRn; by EK*K and E0
KCK we denote the

ellipsoids of minimal and maximal volume for K respectively (they are uniquely
defined by a theorem of John, cf., eg., [T]).
Recall that the volume ratio of K and the outer volume ratio of K are

defined by

vrðKÞ ¼ ðjK j=jE0
K jÞ

1=n and outvrðKÞ ¼ ðjEK j=jK jÞ1=n:

For a symmetric convex body KCRn; an ellipsoid E on Rn; and any 0olo1 we

shall consider certain subsets FJlnnðKÞCGE
n;Jlnn of Jlnn-dimensional subspaces of

Rn: Each element of FJlnnðKÞ gives rise to two different normed spaces. Firstly, it

can be treated as a subspace of the normed space ðRn;KÞ; in which case we may use a
generic notation sK ; that is, sK :¼ ðE;K-EÞ: The set of all these subspaces will be
denoted by Fs;JlnnðKÞ: Secondly, every EAFJlnnðKÞ gives rise to a quotient space

of ðRn;KÞ; via the orthogonal (in E) projection PE onto E; and in this case we may
use a generic notation of qK ; that is, qK :¼ ðE;PEKÞ: The set of all these quotient
spaces will be denoted byFq;JlnnðKÞ: (It should be noted that given a familyFk; the

definition of Fs;k does not depend on the ellipsoid E; while the definition of Fq;k

depends on this ellipsoid in an essential way.)

2. The minimal and maximal volume ellipsoids

We present in this section some new properties of the minimal (resp., maximal)
volume ellipsoid associated to a convex body, which play an essential role in our
constructions. They deal with relations to any other ellipsoid containing (resp.,
contained in) the same body. These new properties depend on an abstract condition
of Dvoretzky–Rogers type. All results can be dualized in a standard way to the
corresponding statements for the maximal volume ellipsoids and their sections.
Let B be a symmetric convex body in Rm and let ECRm be an ellipsoid. Let

f : ð0; 1�-ð0; 1� be a function. We say that E has property ð�Þ with respect to B with
function f; whenever

ð�Þ for any 1pkpm and any projection Q of rank k on Rm orthogonal with respect
to E we have jjQ :B-EjjXfðk=mÞ:
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It is well known that the minimal volume ellipsoid satisfies ð�Þ with the function

fðtÞ ¼
ffiffi
t

p
: This is connected to, but simpler than, the Dvoretzky–Rogers lemma.

(We shall show in Lemma 2.2 below that proportional-dimensional projections of
the minimal volume ellipsoids satisfy ð�Þ as well.)

Theorem 2.1. Let ECRm and DCRm be two ellipsoids, let B :¼ E-D: Let

f : ð0; 1�-ð0; 1� and set A :¼
Qm

l¼1 fðl=mÞ
� �
1=m

: Assume that E has property ð�Þ
with respect to B with function f: Then

jEj1=mpAjDj1=m: ð2:1Þ

Furthermore, if fðtÞXð1=aÞta for some aX1 and aX1=2; then for every 0oxo1 there

is fa;aðxÞX1 such that a random projection Q of rank Jxmn orthogonal with respect to

E satisfies

QECfa;aðxÞQD:

The difficulty of the second part of the theorem lies in the fact that we prove it for
a random projection Q: A deterministic statement of this type is immediate (by
dualizing the proof of Proposition 2.4(a) below).
A typical situation when this theorem may be used is when a symmetric convex

body B̃CRm is given, E*B̃ is any ellipsoid satisfying property ð�Þ with respect to B̃

(see e.g., Lemma 2.2 below), and D*B̃ is arbitrary.

Proof. The first part of the theorem is elementary. Without lost of generality we may

assume that E ¼ B2: Let r1X?Xrm40 and let feigm
i¼1 be an orthonormal basis

such that D is of the form

D ¼ x ¼
Xm

i¼1
xieiARm

Xm

i¼1
x2

i =r
2
i p1

�����
( )

:

Considering the orthogonal projection Q on the spanfeigm
i¼m
kþ1; we obtain, by

property ð�Þ;
rm
kþ1 ¼ jjQ :D-B2jjXjjQ : B-B2jjXfðk=mÞ:

Let %ri ¼ minf1; rig: Clearly we have

E1 :¼ x ¼
Xm

i¼1
xieiARm

Xm

i¼1
x2

i = %r
2
i p1

�����
( )

CE-D:

Thus

jE-Dj=jEjX
Ym
l¼1

%rlX

Ym
l¼1

fðl=mÞ ¼ A
m;

which implies the first part of the theorem.

ARTICLE IN PRESS
A.E. Litvak et al. / Journal of Functional Analysis 213 (2004) 270–289274



To prove the second part of the theorem, let us note that, by duality, it is enough
to prove that

D0-ECfa;aðxÞ B2-E ð2:2Þ

for a random (in B2) subspace E: To show this we shall use the well-known lower
M�-estimate [Go,M1,M5,PT] which says that for every convex body KCRm a
random Jxmn-dimensional subspace E satisfies

K-EC
2M�ðKÞffiffiffiffiffiffiffiffiffiffiffi
1
 x

p B2;

where

M�ðKÞ ¼ 1

m
E

Xm

i¼1
giei

�����
�����

�����
�����
2

K0

0
@

1
A

1=2

;

for independent identically distributed standard Gaussian random variables
g1;y; gm and the Minkowski functional jj � jjK0 :

Note that D0 is the ellipsoid with the semiaxes 1=ri; 1pipm; and that for every
b40 one has

D0-bB2C
ffiffiffi
2

p
E2;

where

E2 :¼ x ¼
Xm

i¼1
xieiARm

Xm

i¼1
x2

i =l
2
i p1

�����
( )

for li ¼ minfb; 1=rig; 1pipm: It is easy to see that

M� ffiffiffi
2

p
E2

� �
¼ 1ffiffiffiffi

m
p 2

Xm

i¼1
l2i

 !1=2

:

Fix bXa to be determined later. Since rm
kþ1Xa
1ðk=mÞa; then

lipminfb; aðm=ðm 
 i þ 1ÞÞag for 1pipm; and we obtain

Xm

i¼1
l2i p

X
ipða=bÞ1=am

b2 þ
X

mXiXða=bÞ1=am

a2ðm=iÞ2a:

In the case a ¼ 1=2 the latter expression is less than or equal to

a2m þ a2mð1þ lnðb2=a2ÞÞ ¼ 2a2mð1þ lnðb=aÞÞ:
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In the case a41=2; this expression is less than or equal to

ma1=ab2
1=a þ b2 þ a2m

2a
 1
ðb=aÞ2
1=ap 2aþ 1

2a
 1
ma1=ab2
1=a;

if mða=bÞ1=aX1: Otherwise, if mða=bÞ1=ap1; the expression is less than or equal to

a2m2a 2a
2a
 1

p
2a

2a
 1
ma1=ab2
1=a:

Thus, by the lower M�-estimate, we obtain for a random Jxmn-dimensional
subspace E

D0-ðbB2Þ-EC
ffiffiffi
2

p
E2-ECAa B2-E; ð2:3Þ

where for a ¼ 1=2 we set

A1=2 :¼
4a

ð1
 xÞ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lnðb=aÞ

p
;

and for a41=2 we set

Aa :¼ 2
ffiffiffi
2

p 2aþ 1

2a
 1

� �1=2

ð1
 xÞ
1=2a1=2ab1
1=2a:

We now treat the two cases separately. Let first a ¼ 1=2: Then let

b :¼ 4a

ð1
 xÞ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð20=ð1
 xÞÞ

p
;

so that A1=2ob: To prove (2.2) fix xAD0-E: Let x0 ¼ ðb=jxjÞx: If bojxj then
x0AD0-E; and hence x0AD0-ðbB2Þ-E: By (2.3) we then get x0AA1=2B2-E: But

jx0j ¼ b4A1=2; a contradiction. This shows that bXjxj and thus (2.2) holds with

fa;1=2ðxÞp4að1
 xÞ
1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð20=ð1
 xÞÞ

p
: This concludes the proof in the case a ¼

1=2:
In the case a41=2 we let

b :¼ 8a
2aþ 1

2a
 1

� �a

ð1
 xÞ
a
a

so that Aa ¼ b: A similar argument as before shows (2.2) with fa;aðxÞp8aðð2aþ
1Þ=ð2a
 1ÞÞað1
 xÞ
a

a: This concludes the proof of the theorem. &
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As the proof above shows the second part of the theorem still holds for certain
functions going to 0 faster than a power type function; however, as this case seems
less important at the present time we omit the details.

As already mentioned, the minimal volume ellipsoid satisfies ð�Þ with fðtÞ ¼
ffiffi
t

p
: A

more general class of examples is provided by proportional-dimensional projections
of the minimal volume ellipsoids.

Lemma 2.2. Let KCRn be a symmetric convex body and let EK be the ellipsoid of

minimal volume for K. Let P be an arbitrary projection in Rn with rank P ¼ m ¼ an;
for some 0oap1: Then PEK has property ð�Þ with respect to PK with function

fðtÞ ¼
ffiffiffiffiffi
at

p
:

Proof. Without loss of generality assume that EK is the canonical ball B2 in Rn: If P

is an orthogonal projection on a subspace E :¼ PðRnÞCRn; then for any orthogonal
projection Q in E of rank k; QP can be considered as an orthogonal projection in Rn

of rank k: Thus, by duality,

jjQ :PK-PB2jjXjjQP : K-B2jj ¼ jji jH : B2-H-K0jj;

where i : B2-K0 is the formal identity operator and H ¼ QPðRnÞ: By the well-
known property of the ellipsoid of minimal volume, the last operator has norm

larger than or equal to
ffiffiffiffiffiffiffiffi
k=n

p
¼

ffiffiffi
a

p ffiffiffiffiffiffiffiffiffi
k=m

p
(see e.g., [T, Section 15] or [GM]).

If P is an arbitrary projection then let F :¼ PðRnÞ; set E ¼ ðker PÞ> and let PE be
the orthogonal projection onto E: Then the operator T :¼ ðPEÞ jF : F-E is

invertible. It is easy to check that TPx ¼ PEx for all xARn: In particular, TPK ¼
PEK and TPB2 ¼ PEB2; in addition, for any projection Q : F-F orthogonal in PB2;

the operator TQT
1 is an orthogonal projection in E with the same rank as Q: This,
and the first part of the proof, clearly imply

jjQ :PK-PB2jj ¼ jjTQT
1 : TPK-TPB2jj

¼ jjTQT
1 : PEK-PEB2jjX
ffiffiffi
a

p ffiffiffiffiffiffiffiffiffi
k=m

p
:

This completes the proof. &

For future reference we formulate an important case.

Corollary 2.3. Let mpn ¼ bm for some bX1: Let KCRn be a symmetric convex body

and let EK be the ellipsoid of minimal volume for K. Let P be an arbitrary projection in

Rn with rank P ¼ m: Set E ¼ PðRnÞ and E ¼ PðEKÞ: Let DCE be an arbitrary

ellipsoid such that D*PK : Then

jEj1=mpc
ffiffiffi
b

p
jDj1=m; ð2:4Þ
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where c40 is an absolute constant. Furthermore, for every 0oxo1; a random

projection Q in E of rank Jxmn orthogonal with respect to E satisfies

QECf ðxÞQD;

where f ðxÞ ¼ 4
ffiffiffi
b

p
ð1
 xÞ
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð20=ð1
 xÞÞ

p
:

Proof. By Lemma 2.2, E has property ð�Þ with respect to PK with function fðtÞ ¼ffiffiffiffiffiffiffi
t=b

p
: Since PKCE-D implies jjQ : PK-EjjpjjQ : E-D-Ejj for every projection

Q; it also has ð�Þ with respect to E-D: The conclusion follows from Theorem 2.1
and the form of the function fa;1=2: &

Theorem 2.1 suggests a ‘‘relaxation’’ of the relation of containment between two
ellipsoids, which seems to be of independent interest. It has been recently introduced
in [MPa2] in connection with some properties of M-ellipsoids. It is formalized it in
the following definition. Let E1 and E2 be two ellipsoids on Rn: We say that E1 is
essentially contained in E2 if for every 0olo1 there is CðlÞX1; depending on l only,
and a subspace ECRn with dim EXln such that

E1-ECCðlÞE2-E: ð2:5Þ

In such a case we may also say that E2 essentially contains E1: We shall say that two
ellipsoids are essentially equivalent if there is a number a40 such that E1 is
essentially contained in aE2 and aE2 is essentially contained in E1: (We could also
consider the dual notion in terms of projections, but for the time being there does not
seem to be much advantage in doing this.)
Since (2.5) deals with sections rather than projections, it is connected with the

property ð��Þ dual to property ð�Þ; introduced as follows. Let BCRm; ECRm and
f : ð0; 1�-ð0; 1� be the same as in the definition of property ð�Þ above. We say that E
has property ð��Þ with respect to B with function f; whenever

ð��Þ for any 1pkpm and any subspace ECRm of dimension k we have
jji jE : E-E-BjjXfðk=nÞ:

A prime example of ellipsoids satisfying property ð��Þ are proportional
dimensional sections of ellipsoids of maximal volume. If KCRn is a symmetric

convex body and E0
KCK is the ellipsoid of maximal volume for K ; and ECRn with

dim E ¼ m ¼ an; for some 0oao1; then E0
K-E satisfies ð��Þ with respect to K-E

with fðtÞ ¼
ffiffiffiffiffi
at

p
:

An easy straightforward argument shows relations between an ellipsoid satisfying
property ð��Þ with respect to a body K and any ellipsoid DCK ; and in particular a
distance ellipsoid for K : Both parts of the proposition below are most interesting for
ellipsoids of maximal volume.
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Proposition 2.4. Let KCRn be a symmetric convex body and let E be an ellipsoid

satisfying property ð��Þ with respect to K with a certain function f:

(a) Then E essentially contains every ellipsoid DCK; with CðlÞp 1
fð1
lÞ:

(b) If additionally ECK then there exists an ellipsoid D with DCKC
ffiffiffi
2

p
dKD which is

essentially equivalent to E (here dK ¼ dðK ;B2Þ denotes the Banach–Mazur

distance to the Euclidean space).

Proof. (a) With the same notation as at the beginning of the proof of Theorem 2.1,

for every 1pkpn consider the subspace Fk :¼ spanfeigk
i¼1: Then our assumptions

imply

r
1k ¼ jji jE : E-E-DjjXjji jE : E-E-KjjXfðk=nÞ:

On the other hand, given 0olo1; let l ¼ Jlnn and let E :¼ spanfeign
i¼n
lþ1: Then

dim E ¼ lXln and we have

D-ECrn
lþ1B2-EC
1

fð1
 lÞ E-E;

completing the proof of (a).

(b) Pick any D0CKCdKD
0 and consider B ¼ convðD0,EÞ: Pick an ellipsoid D

such that DCBC
ffiffiffi
2

p
D: Clearly, DCBCKC

ffiffiffi
2

p
dKD: Since E satisfies ð��Þ then (a)

implies that E essentially contains D with CðlÞp1=fð1
 lÞ: On the other hand,

clearly ECBC
ffiffiffi
2

p
D; completing the proof of (b). &

Remark. For functions f as in the second part of Theorem 2.1, this theorem
provides, by duality, a ‘‘randomized’’ version of Proposition 2.4 in which the
existence of a subspace E satisfying (2.5) is replaced by the statement about ‘‘random
subspaces’’ E:

3. Bodies in M-position

Let us first recall the definition and a few basic facts about M-ellipsoids and
M-positions of symmetric convex bodies.
Let K and L be two sets on Rn: By NðK ;LÞ we denote the covering number, i.e. the

minimal number of translations of L needed to cover K :
Let KCRn be a symmetric convex body and let C40: We say that B2 is an

M-ellipsoid for K with constant C if we have

maxfNðK ;B2Þ;NðB2;KÞ;NðK0;B2Þ;NðB2;K0ÞgpexpðCnÞ: ð3:1Þ

In this case we shall often say that K is in M-position with constant C: It is a deep
theorem first proved in [M3] that there is an absolute constant C040 such that for

ARTICLE IN PRESS
A.E. Litvak et al. / Journal of Functional Analysis 213 (2004) 270–289 279



every symmetric convex body K in Rn there exists a linear transformation taking K

into M-position with constant C0: Throughout the paper we shall use the notation
C0 for such a constant in (3.1). However we shall often omit to mention it explicitly
and we may just write, for example, that K is in M-position. Still, the reader should
always remember that from now on all our absolute constants later actually depend
on this C0:

It follows from the definition that if K is in M-position then so is K0 and that

je
C0B2jpminðjK j; jK0jÞpmaxðjK j; jK0jÞpjeC0B2j:

Without loss of generality we assume from now on that whenever K is in M-position
then jK j ¼ jB2j:
In fact the estimates (3.1) are consequences of the conditions jK j ¼ jB2j and one

estimate NðK ;B2ÞpexpðC0
0nÞ with C0

040 (see Lemma 4.2 of [MS2] or Lemma 10

and subsequent Remark 1 in [MPa1]).

Note, for future reference, that the covering KC
SN

i¼1 ðxi þ B2Þ (with

NpexpðC0nÞ) easily implies the volume estimates

jK þ B2j
jB2j

� �1=n

;
jK j

jðB2-KÞj

� �1=n

p2 eC0 : ð3:2Þ

Furthermore, for any two sets in Rn and every projection P and every subspace E

one has

NðPK ;PLÞpNðK ;LÞ and NðK-E; ðL 
 LÞ-EÞpNðK ;LÞ: ð3:3Þ

The first estimate is trivial. For the second, note that a covering KC
SN

i¼1 ðxi þ LÞ
implies the covering K-EC

S
iAI ðxi þ LÞ-E; where I :¼ fi j ðxi þ LÞ-Ea|g: For

each iAI it is easy to see that ðxi þ LÞ-ECzi þ ðL 
 LÞ-E; for any ziAðxi þ
LÞ-E: Also note that if L is symmetric and convex then L 
 L ¼ 2L:
Let us now describe a functorial construction which plays a fundamental role in

our results. For each symmetric convex body K in Rn in M-position and every
0olo1 we shall define a certain subset FJlnnðKÞCGn;Jlnn such that

mn;JlnnðFJlnnðKÞÞX1
 e
cln; ð3:4Þ

where cl40 is a function of l only. In the future we shall refer to a subset satisfying
measure estimates of this type as a random family.
Given KCRn as above, recall that the ellipsoids of minimal and maximal volume

for K are denoted by EK*K and E0
KCK; respectively. We shall denote the semi-axes

of EK by r1Xr2X?Xrn and a corresponding orthonormal basis by feign
i¼1: Similar

notation is adopted for E0
K with the semi-axes r01Xr02X?Xr0n and a corresponding

orthonormal basis fe0ig
n
i¼1:

Define FJlnnðKÞ as the set of all EAGn;Jlnn satisfying

(i) PEB2CClPEK ; where PE is orthogonal in B2;
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(ii) K-ECClB2-E;
(iii) jPExjXbljxj for every xAspanfeigm

i¼1,spanfe0ig
n
i¼n
mþ1; where m ¼ Jln=2n;

where Cl40 is an appropriate function of l; and bl ¼ c0
ffiffiffi
l

p
with an appropriate

absolute constant c040: Below we keep the notation Cl; bl and c0 for these
constants.

Proposition 3.1. Let K be a symmetric convex body in M-position. Then there exist a

choice of Cl; cl and c0 such that the corresponding family FJlnnðKÞ satisfies (3.4).

Proof. The first two conditions in the definition of FJlnnðKÞ are closely related to

the fact that for a body K in M-position, random proportional-dimensional
projections of K have finite volume ratio. This was discovered (even before the
existence of an M-ellipsoid) in [M2] (Theorem 4.1, Step d, p. 389), see also [M4, p.
107] for a slightly stronger statement. We shall use the general volume ratio

argument that if KCRn is a symmetric convex body and jK þ B2j=jB2jð Þ1=npa then
for any 0olo1; for a set of subspaces EAGn;Jlnn of large measure we have

K-ECCB2-E; where Cpð4paÞ1=ð1
lÞ ([Sz1], see also Chapter 6 of [Pi]). By duality,

if jB2j=jK-B2jð Þ1=npb then for a set of subspaces EAGn;Jlnn of large measure we

have PEB2CC1PEK ; where C1 ¼ ðcbÞ1=ð1
lÞ and c40 is an absolute constant. Since
in our situation K is in M-position, it easily follows from (3.2) that the required
upper estimates for a and b are satisfied, with a and b depending on C0; and hence
conditions (i) and (ii) hold with Cl depending on l only.
To prove that the third condition is also satisfied for the set of large measure we

need the following lemma well known to experts.

Lemma 3.2. Let mpn and 1pkpm=2; and let HCRn be a k-dimensional subspace.
Then

mn;m Ej jPExjXc
ffiffiffiffiffiffiffiffiffi
m=n

p
jxj for all xAH

n o� �
X1
 e
cm;

where c40 is an absolute constant.

Remark. The estimate is also valid for kpxm; for any 0oxo1; with the constant c

replaced by a function of x:
Returning to the proof of Proposition 3.1, condition (iii) uses the estimate

from Lemma 3.2 twice, separately for H ¼ spanfeigJln=2n
i¼1 and for H 0 ¼

spanfe0ig
n
i¼n
Jln=2nþ1: Combining this with the estimates for the sets satisfying (i)

and (ii) we finally get

mn;lnðFlnðKÞÞX1
 expð
clnÞ;

which is required in (3.4). &
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Remark. The function Cl in conditions (i) and (ii) can be improved to a polynomial
dependence on 1=ð1
 lÞ by using an M-ellipsoid constructed by Pisier. For
example, using Theorem 7.13 of [Pi] and Theorem 3.2 of [LT], we immediately get

ClpCe
3=2ð1
 lÞ
ðeþ1=2Þ; for any e40:

Proof of the Lemma 3.2. The lemma can be proved by a reduction to the Gaussian
case (as in [MT, Proposition 3.1]) and then using a similar fact for k � m Gaussian
matrices (cf. e.g., [Sz2], Lemma 2.9). For the reader’s convenience we also outline a
standard direct argument, which however works for kpc1m only, where 0oc1o1 is
a universal constant. First we estimate the measure of the subset of all EAGn;m

satisfying a slightly stronger inequality for a fixed vector x0 with jx0j ¼ 1; and then
we combine this measure estimate with a so-called e-net argument. To get the first
measure estimate we observe that

mn;m Ej jPEx0jX2c
ffiffiffiffiffiffiffiffiffi
m=n

pn o� �
¼ hn UAOnj jPmUx0jX2c

ffiffiffiffiffiffiffiffiffi
m=n

pn o� �
¼ mn zASn
1 j jPmzjX2c

ffiffiffiffiffiffiffiffiffi
m=n

pn o� �
;

where hn denotes the normalized Haar measure on the orthogonal group On; Pm is
the orthogonal projection in Rn on the first m coordinates, and mn denotes the
normalized measure on the sphere Sn
1: The measure of the latter set can be then

estimated by noting that EjPmzjB
ffiffiffiffiffiffiffiffiffi
m=n

p
and then using the standard concentration

inequality for Lipschitz functions on the sphere [MS1]. &

4. Main results

The main result of this paper is the following theorem.

Theorem 4.1. Let K and L be two symmetric convex bodies in Rn in M-position, and

assume that for some 0olo1 and some d41 there is a quotient space qKAFq;JlnnðKÞ
and a subspace sLAFs;JlnnðLÞ such that the Banach–Mazur distance satisfies

dðqK ; sLÞpd:

Then

outvrðKÞpC and vrðLÞpC;

where C ¼ Cðl; dÞ is a function of l and d only.

The proof of the theorem is based on the following proposition.
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Proposition 4.2. Let KCRn be a symmetric convex body in M-position. Let 0olo1:
Let EAFJlnnðKÞ and let PE be the orthogonal projection on E. Then

outvrðKÞpC0
lðoutvrðPEKÞÞ2; ð4:1Þ

where C0
l depends on l (and on constant C0 which defines the M-position we use).

Remark. As it can be seen from the proof below, the power 2 in the estimate (4.1)
can be improved to any a41:

Proof of Proposition 4.2. Recall that EK*K is the ellipsoid of minimal volume for
K ; and we denoted its semi-axes by r1Xr2X?Xrn; and the corresponding

orthonormal basis by feign
i¼1: To simplify the notation, set P :¼ PE : Consider the

ellipsoid PEK in E; and denote its semi-axes by r01Xr02X?Xr0m (where m :¼ Jlnn).
(There will be no confusion with the semi-axes of the ellipsoid of maximal volume
since we do not consider this ellipsoid in this proof.)
The natural Euclidean structure in E is of course given by PB2 ¼ B2-E; and by

the definition of FmðKÞ we have PB2CClPK : On the other hand, clearly,

PKCPEK ; and hence r0mXC
1
l :

We first observe that since EAFmðKÞ then for all 1pjpJm=2n we have

r0jprjpð1=blÞr0j: ð4:2Þ

Indeed, given an ellipsoid DCRm with semi-axes l1Xl2X?Xlm one has

lj ¼ inf
L

sup
xAL-D

jxj;

where infimum is taken over all ðm 
 j þ 1Þ-dimensional subspaces L: Thus, since
jPxjpjxj for xARn; we have r0jprj for every jpm: On the other hand, since

Jm=2n ¼ Jln=2n; by the definition ofFmðKÞ; we have jPxjXbljxj for every xAE0 :
¼ spanfei j 1pipJm=2ng; which means that the operator

PjE0
: ðE0;B2-E0Þ-ðPE0;PB2Þ

is invertible with the norm of the inverse bounded by 1=bl: That implies
rjpð1=blÞr0j:
By (4.2) we get

jEK j
jKj

� �1=n

¼ jEK j
jB2j

� �1=n

¼
Yn

i¼1
ri

 !1=n

p
YJm=2n

i¼1
ri

 !1=Jm=2n

p
Cl

bl

Ym
i¼1

r0i

 !2=m

¼ Cl

bl

jPEK j
jPB2j

� �2=m

: ð4:3Þ
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Let D*PK be the ellipsoid of minimal volume for PK ; so that

jDj1=m ¼ outvrðPKÞjPK j1=m: ð4:4Þ

Applying Corollary 2.3 for the ellipsoids E ¼ PEKCE and DCE we get, by (2.4),

jPEK j1=mpðc=
ffiffiffi
l

p
ÞjDj1=m:

By the definition of M-ellipsoid we have jPK jpexpðC0nÞjPB2j: Thus we get

jPEK j
jPB2j

� �2=m

p ðc2=lÞðoutvrðPKÞÞ2 jPK j
jPB2j

� �2=m

p ðc2 expð2C0=lÞ=lÞðoutvrðPKÞÞ2:

Combining this with (4.3) and the formula for bl we obtain (4.1) with C0
l ¼

ðc2=c0Þ Cl l
3=2 expð2C0=lÞ; which completes the proof. &

Now we are in the position to prove Theorem 4.1.

Proof of Theorem 4.1. By the definition of M-position (3.1) and by (3.3), we have

jPK jpexpðC0nÞ jPB2j and jB2-EjpexpðC0nÞ j2L-Ej

for every projection P and every subspace E: Thus, by the definitions of FJlnnðKÞ
we have that every quotient qKAFq;lnðKÞ admits an estimate for the volume ratio,

vrðqKÞpðjPEK j=jC
1
l PEB2jÞ1=JlnnpCl expðC0=lÞ:

Similarly, every subspace sLAFs;JlnnðLÞ admits an estimate for the outer volume

ratio, outvrðsLÞpal :¼ 2Cl expðC0=lÞ: Now, let qK and sL satisfy the hypothesis of
the theorem, then

outvrðqKÞpd outvrðsLÞpald:

By Proposition 4.2 we obtain

outvrðKÞpC0
lðaldÞ2:

The estimate for vrðLÞ follows by duality. &

Remark. The dependence on d in Cðl; dÞ can be improved by using the remark after
Proposition 4.2 and a modification of the family FJlnnðKÞ: We then obtain that for

every a41; Cðl; dÞpCl;ad
a; where Cl;a depends on l and a only.

Setting K ¼ B2 in Theorem 4.1 we get an interesting corollary.
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Corollary 4.3. Let L be a symmetric convex body in Rn in M-position. If for some

0olo1 and some d41 a random Jlnn section sL of L is d-Euclidean, then vrðLÞpC;
where C ¼ Cðl; dÞ is a function of l and d only.

This corollary was proved in [MS2] in the case when the Euclidean distance was
replaced by the geometric distance to the ball B2: In this case it is shown by
combining Theorems 3.10 and 2.2 in [MS2], that for any 0oxo1; a random section
of L is C-equivalent to B2:
Theorem 4.1 has the following standard consequence about the existence of a large

family of Euclidean quotients and subspaces.

Corollary 4.4. Let K and L be two symmetric convex bodies in Rn in M-position, and

assume that for some 0olo1 and some d41 there is a quotient space qKAFq;JlnnðKÞ
and a subspace sLAFs;JlnnðLÞ such that the Banach–Mazur distance satisfies

dðqK ; sLÞpd:

Then for every 0oxo1 a random (in EK ) projection of K of rank Jxnn is %C-Euclidean

and a random (in E0
L) Jxnn-dimensional section of L is %C-Euclidean, where %C ¼

%Cðl; x; dÞ is a function of l; x and d only.

Proof. The proof relies on the volume ratio argument. Recall that since EK is the
ellipsoid of minimal volume for K then a random orthogonal (in EK ) projection
satisfies

PEEKCð4p outvrðKÞÞ1=ð1
lÞ
PEK ; ð4:5Þ

and since E0
L is the ellipsoid of maximal volume for L then a random (in E0

L)

subspace E of Rn satisfies

K-ECð4p vrðKÞÞ1=ð1
lÞE0
K-E ð4:6Þ

([Sz1], see also Chapter 6 of [Pi]).
The conclusion of the corollary follows directly from Theorem 4.1 and (4.5), (4.6)

with %C ¼ ð4pCÞ1=ð1
xÞ; where C is a function from Theorem 4.1. &

As we have just seen, the closeness of spaces qK and sL in Theorem 4.1 and
Corollary 4.4 implies the existence of many Euclidean quotients and subspaces, of an
arbitrary proportional dimension, for K and L; respectively. However one may ask
whether the spaces qK and sL themselves are isomorphic to Euclidean as well?
Surprisingly, the answer in general is no: an example below shows that for some K

and L one may select M-ellipsoids in such a way that random quotients of K and
subspaces of L are far from Euclidean, while being close together. At the same time
we believe that it might be true that for a judiciously selected M-ellipsoid, the
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hypothesis of our theorem indeed implies that qK and sL are Euclidean, with a high
probability.

Example 4.5. Let k ¼ Jn=ln nn and m ¼ n 
 k: Write Rn ¼ Rm"Rk: Let V be an

arbitrary k-dimensional symmetric convex body such that Bk
2CVCkBk

N
; where Bk

p is

the unit ball of ck
p : Set K ¼ Bm

2 "2V : Note that B2 ¼ Bn
2 is contained in K and K has

bounded volume ratio with respect to B2: This immediately implies that a multiple of
B2 by a universal constant is an M-ellipsoid for K : Of course the randomness with
respect to this M-ellipsoid is the same as with respect to B2: Since k is small, random
proportional dimensional projections (with respect to B2) are good isomorphisms,

when restricted to Rk that corresponds to V (see Lemma 3.2). Thus, since Bk
2 is

contained in V ; we have that PK is well isomorphic to Bc
2"2V ; where c ¼ rankP 
 k:

Actually, PK is isomorphic to the convex hull of V and Brank P
2 ; but since V contains

Bk
2 ; it is easy to see that this convex hull is isomorphic to the direct sum above.

Now set L ¼ Bm
2 "2W where W is an arbitrary symmetric convex body in Rk such

that Bk
2*W*ð1=kÞBk

1 : Then applying the above argument for L0 and then dualizing

again we get that (a multiple of) B2 is an M-ellipsoid for L and L has random

sections isomorphic to Bc
2"2W :

Now fix an arbitrary V as above (and set K ¼ Bm
2 "2V ). Let W be an affine image

of V satisfying Bk
2*W*ð1=kÞBk

1 (note that if we make Bk
2 to be the ellipsoid of

minimal volume for W then the second inclusion is automatically satisfied), and let

L ¼ Bm
2 "2W : Then random projections of K (being equivalent to Bc

2"2V ) and

random sections of L (being equivalent to Bc
2"2W ) are well isomorphic to each

other, while being very far from Euclidean. &

We now pass to a discussion of the global form of the results of the first part of
this section. Although we always have an analogy between local and global results,
there is no abstract argument proving this. In the present context the global result is
much easier.
Instead of working with random families of subspaces of Rn we will work with

random families of orthogonal operators. Let OðnÞ denote the group of orthogonal
operators on Rn and let n denote the normalized Haar measure on OðnÞ: Given
symmetric convex body KCRn in M-position defineHðKÞ as the set of all operators
UAOðnÞ satisfying

(i) cB2CK þ UK ;
(ii) cðK-UKÞCB2

for some absolute constant c40: These two conditions are the global form of the
conditions (i) and (ii) in the definition of the random family F½ln�ðKÞ: It can be

shown [M5] that there exists a choice of c40 such that

nðHðKÞÞX1
 e
c1n;

where c140 is an absolute constant.
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Note that ðK þ UKÞ0 is 2-equivalent to K0-ðU�Þ
1K0 and ðK-UKÞ0 is

2-equivalent to K0 þ ðU�Þ
1K0: Thus, since ðU�Þ
1 ¼ U for UAOðnÞ; we obtain

that HðKÞ ¼ HðK0Þ; possibly replacing the constant c in the definition by c=2:
The following theorem is the global version of Theorem 4.1.

Theorem 4.6. Let K and L be two symmetric convex bodies in Rn in M-position.
Assume that there are operators UAHðKÞ; VAHðLÞ; and some d41 such that

dðK0;L0Þpd;

where K0 ¼ K þ UK and L0 ¼ L-VL: Then

outvrðKÞpðC1=cÞ expð4C0Þ d and vrðLÞpðC1=cÞ expð4C0Þ d;

where C1 is an absolute constant and c is from the definition of the families HðKÞ
and HðLÞ:

In particular we obtain that for some linear (but not necessarily orthogonal)
operators u and v; the bodies K þ uK and L-vL are (uniformly) equivalent to some
ellipsoids.

Proof. By the definition of the set HðKÞ we have cB2CK0: On the other hand, by
the definition of M-ellipsoid and covering numbers we obtain that K þ UK can be
covered by expð2C0nÞ translations of 2B2: That implies

vrðK0ÞpðjK0j=jcB2jÞ1=npð2=cÞ exp ð2C0Þ:

To find the upper bound for the outer volume ratio of L0 we could use a similar
covering argument (cf. proof of Claim 6.5 in [LMS]), however it is simplier to use

duality. Indeed, cB2CL0
0 ¼ convðL0;VL0ÞCL0 þ VL0: Thus repeating the proof

above and using Bourgain–Milman’s inverse Santaló inequality [BM2] we obtain

outvrðL0Þpðjð1=cÞB2j=jL0jÞ1=npC1ðjL0
0j=jcB2jÞ1=npð2C1=cÞ expð2C0Þ;

where C140 is an absolute constant. Since dðK0;L0Þpd; then K0 has outer volume
ratio bounded by ð2C1d=cÞ expð2C0Þ: Let E be the minimal volume ellipsoid for K0:
Then KCK0CE and

jEj
jK j

� �1=n

¼ jEj
jK0j

� �1=n jK0j
jB2j

� �1=n jB2j
jK j

� �1=n

pð4C1=cÞ expð2C0Þ d;

which implies boundedness of outvrðKÞ: The result for vrðLÞ follows by the similar
argument. &

Remark. It is clear from the proof that the theorem can be generalized to the case of
many orthogonal operators. Namely, let K ;L;U ; and V be as in the theorem.
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Assume further that U1;y;Uk and V1;y;Vm are arbitrary orthogonal operators on
Rn: Let K0 ¼ K þ UK þ U1K þ?þ UkK and L0 ¼ L-VL-V1L-?-VmL:
Then if dðK0;L0Þpd then

outvrðKÞpCd and vrðLÞpCd;

where C is a function of k; m; c and C0 only.
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