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Abstract

In this note we introduce a notion of essentially-Euclidean normed
spaces (and convex bodies). Roughly speaking, an n-dimensional
space is λ-essentially-Euclidean (with 0 < λ < 1) if it has a [λn]-
dimensional subspace which has further proportionally dimensional
Euclidean subspaces of any proportion. We consider a space X1 =
(Rn, ‖ · ‖1) with the property that if a space X2 = (Rn, ‖ · ‖2) is
“not-too-far” from X1 then there exists a [λn]-dimensional subspace
E ⊂ Rn such that E1 = (E, ‖ · ‖1) and E2 = (E, ‖ · ‖2) are “very
close.” We then show that such X1 is λ-essentially-Euclidean (with λ
depending only on quantitative parameters measuring “closeness” of
two normed spaces). This gives a very strong negative answer to an
old question of the second named author. It also clarifies a previously
obtained answer by Bourgain and Tzafriri. We prove a number of
other results of a similar nature. Our work shows that, in a sense,
most constructions of the asymptotic theory of normed spaces cannot
be extended beyond essentially-Euclidean spaces.
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1 Introduction

The asymptotic theory of normed spaces, as well as the asymptotic study of
centrally symmetric convex bodies, has revolved mainly around properties
of “Euclidean-type.” One searched for large sections well isomorphic to Eu-
clidean spaces, for well complemented subspaces (which were often actually
Euclidean) and so on. It was not necessarily the goal of the theory but a
consequence of the methods used. For example, the following problem was
formulated in [M3]:

Problem. Is it true that for every β > 0 and R > 1 + β there exists
a λ = λ(β, R) ∈ (0, 1] such that for each n and all X1 = (Rn, ‖ · ‖1) and
X2 = (Rn, ‖ · ‖2) with d(X1, X2) < R, there exists a k-dimensional subspace
E ⊂ Rn such that k ≥ λn and d(E1, E2) ≤ 1 + β, where E1 = (E, ‖ · ‖1) and
E2 = (E, ‖ · ‖2)?

Clearly, if one space is Euclidean then the answer is affirmative (see e.g.,
[M2]). Bourgain and Tzafriri gave a very strong negative answer in [BT]
for spaces `n

p for p > 2 and the Banach-Mazur distance. This shows that
even a “nice” geometry of uniformly smooth and uniformly convex spheres
does not ensure a positive answer. This example, however, is not easy, as it
uses, in a very precise quantitative form all accumulated knowledge about
the structure of subspaces of lnp . A simpler (counter-)example is provided
by `n

∞ by using results of [FJ] (we thank W. B. Johnson for this recent
observation). This is based on rougher arguments but does not have any
additional geometric properties which appeared implicitly in the background
of [M3]. So the question of how far constructions of the asymptotic theory
can be extended beyond the “Euclidean” framework remained open.

We show in this note that, actually, the theory cannot be extended beyond
“essentially-Euclidean” spaces. (For this and related definitions see Section 3
and note that these definitions involve a number of (fixed) parameters.) For
example, we not only provide a negative answer to the problem above, but
in fact we give a characterization of spaces under consideration by answering
the following question.

Question. Let λ ∈ (0, 1], β > 0, and R > 1 + β; let n be a positive
integer. Assume that a space X1 = (Rn, ‖·‖1) has the property that whenever
X2 = (Rn, ‖ · ‖2) is a space satisfying d(X1, X2) < R then there exists a
[λn]-dimensional subspace E ⊂ Rn such that d(E1, E2) ≤ 1 + β, where E1 =
(E, ‖ · ‖1), E2 = (E, ‖ · ‖2). What can be said about X1?
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We show (in Theorem 4.3 and remarks following it) that if X1 has such
a property (in terms of the geometric distance) for a fixed triple (β, R, λ) of
parameters, with β > 0, R > 2(1 + β), λ ∈ (0, 1], then X1 is λ-essentially-
Euclidean. This means, roughly speaking, that X1 has a [λn]-dimensional
subspace, which has further proportionally dimensional Euclidean subspaces
of any proportion. This provides a strong negative answer to the discussed
problem in two ways. Firstly, it characterizes a class of spaces X1 for which
the problem has a positive solution for every space X2 such that the geometric
distance d(X1, X2) < R. (Strictly speaking, Theorem 4.3 proves one impli-
cation only, however the inverse implication is well-known.) Secondly note
that in the problem, given β and R > 1+β, λ is a function of β and R, while
Theorem 4.3 and remarks afterwards provide the answer for an arbitrary
choice of parameters (β, R, λ) satisfying R > 2(1 + β). It also explains why
Bourgain-Tzafriri’s example works only for p > 2 (namely, as is well-known,
for p ≤ 2 the `n

p spaces are essentially-Euclidean; while for p > 2 the `n
p spaces

are not essentially-Euclidean, see Section 3). We would also like to mention
that we do not know an answer for the case 1+β < R ≤ 2(1+β). Although
we might expect the answer to be the same we do not exclude a possibil-
ity of some different surprising result. Finally in Section 5 we prove results
of a similar nature relating the existence of nice proportional-dimensional
sections to coverings of symmetric convex bodies.

2 Notation

We consider Rn with the standard Euclidean structure. The canonical Eu-
clidean norm on Rn is denoted by | · |, and the corresponding inner product
by 〈·, ·〉. The Euclidean unit ball and the Euclidean unit sphere are denoted
by Bn

2 and Sn−1, respectively.
By a body we always mean a compact star-shaped body. By a symmetric

body we mean a body that is centrally-symmetric with respect to the origin.
Let K be a convex body in Rn containing the origin. The polar body K0 is
given by

K0 := {x ∈ Rn | 〈x, y〉 ≤ 1 for every y ∈ K} .

We recall that for every subspace E of Rn the polar (in E) of K∩E is PEK0,
where PE is the orthogonal projection onto E.

Given a symmetric convex body K ⊂ Rn we will use the notation ‖ · ‖K
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for the Minkowski functional of K. The normed space (Rn, ‖·‖K) will be also
denoted by (Rn, K). The geometric distance between K ⊂ Rn and L ⊂ Rn

is defined by

dg(K, L) := inf {b/a | a > 0, b > 0, aK ⊂ L ⊂ bK}.

If dg(K, L) ≤ C then we say that K and L are C-equivalent. The Banach-
Mazur distance between K and L is defined by

d(K,L) := inf {dg(K, TL)},

where the infimum is taken over all invertible linear operators T from Rn

to Rn. The Banach-Mazur distance between normed spaces is defined as
the Banach-Mazur distance between their unit balls. If the Banach-Mazur
distance between a space and the Euclidean space is bounded by C we say
that the space is C-Euclidean.

Let K ⊂ Rn and L ⊂ Rn. The covering number N(K, L) is the smallest
integer m such that m shifts of L cover K. If K is a convex body, then a
standard volume argument shows that N(K, εK) ≤ (1 + 2/ε)n.

The n-dimensional volume of a body K in Rn is denoted by |K|.
Finally we will need the definition of an M -position of a convex body.

This requires the following theorem of the second named author ([M4], see
also Chapter 7 of [Pi]).

Theorem 2.1 There exists an absolute constant C such that for every n ≥ 1
and every symmetric convex body K ⊂ Rn there exists a linear operator T
on Rn satisfying

N(TK, Bn
2 ) ≤ exp(Cn) and N(Bn

2 , TK) ≤ exp(Cn).

The image of K under a linear operator T satisfying Theorem 2.1 is called
an M -position of K.

We will use the following property of an M -position. In fact, this property
played a role in the probabilistic proof of the quotient-of-subspace theorem
by the second named author.

Proposition 2.2 Let C > 0 and let K ⊂ Rm be a symmetric convex body
such that

N(K, Bm
2 ) ≤ exp(Cm).
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Then for every 0 < ε < 1 there exists an [εm]-dimensional subspace E ⊂ Rm

such that
K ∩ E ⊂ Cε Bm

2 ∩ E,

where Cε depends only on ε and C.

The proposition follows immediately from the volume ratio theorem ([ST]),
used for example in the (equivalent) form of Proposition 5.1. It suffices to
note that the Minkowski sum K1 = K+Bm

2 satisfies N(K1, 2B
m
2 ) ≤ exp(Cm)

and K1 ⊃ Bm
2 .

We shall also provide a direct elementary argument, for the convenience
of readers.

Proof Without loss of generality we assume that m ≥ 3. Let r < 1
be a (small) positive parameter, which we specify later. Denote N :=
N(K, Bm

2 ) = N(rK, rBm
2 ) ≤ exp(Cm). By the definition of covering num-

bers there exist N points x1, . . . , xN in Rm such that

rK ⊂
N⋃

i=1

(xi + rBm
2 ) .

Let
K̄ :=

{
y ∈ Sm−1 | |x− y| ≤ r for some x ∈ (rK) ∩ Sm−1

}
and, for i ≤ N , let

Si :=
{
y ∈ Sm−1 | |x− y| ≤ r for some x ∈ (xi + rBm

2 ) ∩ Sm−1
}

.

Then

K̄ ⊂
N⋃

i=1

Si.

Clearly, every Si is a cap of radius at most (in the geodesic metric) α =
arcsin(2r). Let µ denote the normalized Lebesgue measure on Sm−1. Direct
calculation (see, e.g., [MS]) shows that

µ(Si) ≤
∫ α

0
sinm−2 t dt∫ π

0
sinm−2 t dt

≤ α sinm−2(α)

√
m− 2

2
≤
√

m− 2 (2r)m−1.

Thus
µ(K̄) ≤ eCm (3r)m−1 .
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Now let F be a (fixed) k-dimensional subspace of R with k = [εm]. Let N
be a r-net (in the Euclidean metric) in F∩Sm−1 of cardinality |N | < (3/r)k−1

(existence of such a net follows by a standard volume argument). Let P be
the normalized Haar measure on the group of orthogonal operators O(m).
Using the uniqueness of Haar measure and the union bound, we obtain

P
({

U ∈ O(m) | ∃a ∈ N such that Ua ∈ K̄
})

≤ |N | µ(K̄) <

(
3

r

)εm−1

eCm (3r)m−1 < 1,

provided that
1

r
≥

(
31+εe2C

)1/(1−ε)
.

Thus there exists an operator U ∈ O(m) such that the subspace E = UF
satisfies Ua 6∈ K̄ for every a ∈ N . Since {Ua} is a r-net in E ∩ Sm−1 it
follows that for every x ∈ E ∩ Sm−1 we have x 6∈ rK, i.e.

(rK) ∩ E ⊂ Bm
2 ∩ E.

The choice r =
(
3eC

)−2/(1−ε)
implies the result. 2

Since N(K ∩ F, Bn
2 ∩ F ) ≤ N(K,Bn

2 ) for every subspace F ⊂ Rn, the
proposition immediately implies the following corollary.

Corollary 2.3 Let K ⊂ Rn be a symmetric convex body in M-position. Let
0 < δ < 1 and F ⊂ Rn be a [δn]-dimensional subspace. Then for every
0 < ε < 1 there exists an [εδn]-dimensional subspace F0 ⊂ F such that

K ∩ F0 ⊂ C(ε, δ) Bn
2 ∩ F0,

where C(ε, δ) depends only on ε and the ratio C/δ (where C is the constant
from the definition of an M-position).

In particular, if for some R > 0,

Bn
2 ∩ F ⊂ R K ∩ F,

then
1

R
Bn

2 ∩ F0 ⊂ K ∩ F0 ⊂ C(ε, δ) Bn
2 ∩ F0.
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Remark One can get a better dependence of C(ε, δ) on ε and δ than the
one that follows from the proof of Proposition 2.2 above using a so-called
regular M -position. Recall that a convex body K is said to be in a regular
M -position if for every t > 0

N(K, tBn
2 ) ≤ exp (C0n/t) and N(Bn

2 , tK) ≤ exp (C0n/t),

where C0 is an absolute positive constant independent on the dimension,
t, and the body K. (This position is often called 1-regular, because the
power of t in the exponent equals to 1. However since in this paper we do
not use other regular positions, we suppress the number 1 in the definition.)
Actually, Pisier showed a more delicate fact that for any positive α < 2, the
above bound for covering numbers can be replaced by exp(Cαn/tα), see e.g.
[Pi], Chapter 7 for the proof. A strengthening to regular M -positions is not
essential for Corollary 2.3. Moreover, we do not use this notion further on,
except in the proof of Theorem 4.3.

3 Essentially-Euclidean bodies

We introduce the following definitions.
Fix a function d = d(λ, ε) ≥ 1 on (0, 1] × (0, 1). Let λ ∈ (0, 1]. A

body K ⊂ Rn is called λ-ess-Euclidean if there exists a [λn]-dimensional
section K ∩ F of K such that for every ε ∈ (0, 1) there exists a further
[ελn]-dimensional section of K ∩ F which is d-Euclidean. Note that this
definition also depends on d, although this dependence is suppressed in the
terminology. The case λ = 1 is of importance and has appeared implicitly
in many contexts. It contains, in particular, bodies with bounded volume
ratios ([ST]), unit balls of cotype-2 spaces ([FLM], [M1], [DS]), unit balls of
weak-cotype-2 spaces ([MP], see also [Pi]).

Let 0 < δ ≤ λ < 1 and d ≥ 1. A body K ⊂ Rn is called (λ, δ)-ess-
Euclidean if for every [λn]-dimensional section of K there exists a further
[δn]-dimensional section, which is d-Euclidean.

We extend these notions to normed spaces in the standard way by saying
that a space X = (Rn, ‖ · ‖) is λ-ess-Euclidean (resp. (λ, δ)-ess-Euclidean) if
its unit ball is λ-ess-Euclidean (resp. (λ, δ)-ess-Euclidean).

We would like to emphasize that, as usual in the asymptotic theory of
normed spaces, for a fixed value of the parameter λ and a fixed function
d = d(ε), we consider the class of λ-ess-Euclidean convex bodies in Rn, for
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an arbitrary n ≥ 1. Similarly, for fixed values of parameters λ, δ and d, we
consider (λ, δ)-ess-Euclidean convex bodies in Rn, for n ≥ 1. In particular, all
results below are stated for a given convex body in Rn, and describe relevant
parameters of the body and dependences between them in full details, by
formulas valid for all n ≥ 1. Of course, if the dimension n is small (say,
n < 2/λ or n ≤ d2) then any symmetric convex body is λ-ess-Euclidean and
(λ, δ)-ess-Euclidean, and so our results are really interesting in suitably high
dimensions only.

It should be noted that the terminology “essentially-Euclidean spaces/bo-
dies” freely used throughout the paper is rather a jargon of the asymptotic
theory of normed spaces than a precise notion (in the same spirit as, for
example, type-2 and cotype-2 spaces, spaces of bounded volume ratio, and
many others). We believe that it provides the right intuition of the subject
and at the same time is not misleading – especially that, as mentioned earlier,
results below are stated in precise terms of all involved parameters.

Finally we would like to recall that, given (fixed) p > 2, the class of `n
p

spaces, n ≥ 1, is not a subset of the class of all λ-ess-Euclidean or (λ, δ)-
ess-Euclidean spaces (for any choice of parameters). Indeed, for p = ∞,
it is well known that `n

∞ does not have Euclidean subspaces of dimension
essentially higher than log n. More precisely, if E is a k-dimensional subspace
of `n

∞ satisfying d(E, `k
2) ≤ d then k ≤ C(d) log n, where C(d) is a constant

depending only on d ([M2], see also 5.7 of [MS]). In fact sharper estimates
are known, namely, for such an E one has d(E, `k

2) > c
√

k/log(n/k) which
implies that k ≤ Cd2 log(n/d2), where c, C are absolute positive constants
(see [G]). For 2 < p < ∞, the space `n

p cannot have Euclidean subspaces of

dimension higher than Cpn
2/p. That is, if F is a k-dimensional subspace of

`n
p satisfying d(E, `k

2) ≤ d then k ≤ d2pn2/p ([BDGJN], see also 5.6 of [MS]).
Thus, for large enough n, the space `n

p , 2 < p ≤ ∞, cannot be λ-ess-Euclidean
or (λ, δ)-ess-Euclidean.

4 Lipschitz functions on convex bodies

In 1971 the second named author used properties of Lipschitz functions on
the sphere and the concentration phenomenon on the sphere to provide a
new proof of Dvoretzky’s Theorem ([M2], see also [FLM] and [MS]). The
new argument was much simpler than the original one and led to better (in
fact, the best possible) estimates on the dimension of Euclidean sections of a
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convex body. It also provided a powerful general tool to study the behavior
of high-dimensional convex bodies. In particular the following stabilization
result was proved ([M2], see also [MS], 2.4).

Theorem 4.1 Let f : Sn−1 → R+ be a 1-Lipschitz function in the Euclidean
metric and let Mf be the median of f . Let ε > 0 and set λ = ε2/(2 log(4/ε)).
Then there exists a [λn]-dimensional subspace E ⊂ Rn such that |f(x) −
Mf | ≤ 2ε for all x ∈ Sn−1 ∩ E.

In particular under the hypotheses of the theorem, considering the cases
Mf ≤ 6ε and Mf > 6ε, it is clear that the subspace E satisfies the (non-
exclusive) dichotomy: either f(x) ≤ 8ε for all x ∈ Sn−1 ∩ E, or (2/3)Mf ≤
f(x) ≤ (4/3)Mf for all x ∈ Sn−1 ∩ E.

In this section we consider similar dichotomies for Lipschitz functions on
a general convex body and show that they can hold if and only if the body
is essentially-Euclidean.

Let K ⊂ Rn be a symmetric convex body. Let 0 < λ < 1 and α, R > 0.
We say that K has property L (with parameters λ, α, R) if for every 1-
Lipschitz function f (in the metric ‖ · ‖K) defined on the boundary ∂K of K,
there exists a [λn]-dimensional subspace E ⊂ Rn such that either f(·) ≤ α
on ∂K∩E or f(·) ≥ R on ∂K∩E. It is noteworthy that in the latter case the
assumed lower bound for f already implies, as a byproduct of the argument,
the stronger condition that f is equivalent to R.

Note that property L does not depend on the position of a body K, that
is, if K has property L then so does TK for any linear invertible operator
T . Indeed, given a function f on the boundary of TK we can consider the
function g on the boundary of K defined by g(x) = f(Tx) and apply property
L of K.

Theorem 4.2 There exists an absolute constant C such that the following
holds. Let n ≥ 1 and K be a symmetric convex body in Rn. Let 0 < λ < 1
and α, R > 0. If α < 1/(4 exp(C/λ)) and K has property L with parameters
λ, α, and R then K is λ-ess-Euclidean with d(λ, ε) < C(ε, λ)R, where C(ε, λ)
depends only on ε and the ratio C/λ.

Stabilization Theorem 4.1 says that Bn
2 has property L, and it is easy to

see that if K is essentially-Euclidean then it also has property L.
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In a sense, Theorem 4.2 provides some kind of uniqueness: if a body K
has property L then K is essentially-Euclidean. So stabilization (and prop-
erty L which is weaker) can be achieved only by relating to some Euclidean
structure.

Proof Let C be the constant from the definition of an M -position and
assume without loss of generality that K is in M -position. Consider the body
B = conv (K∪Bn

2 ). Consider the function f on ∂K defined by f(x) = ‖x‖B.
Clearly,

|f(x)− f(y)| ≤ ‖x− y‖B ≤ ‖x− y‖K ,

i.e., f is 1-Lipschitz. By property L of K there exists a [λn]-dimensional
subspace E of Rn such that either f(·) ≤ α on ∂K ∩ E or f(·) ≥ R on
∂K ∩ E.

First we show that the former case is impossible, due to the assumption
on α. Indeed, f(·) ≤ α on ∂K∩E means ‖x‖B ≤ α‖x‖K on E, which implies

K ∩ E ⊂ α (conv (K ∪Bn
2 )) ∩ E ⊂ α (K + Bn

2 ) ∩ E.

On the other hand since K is in M -position we have

N(K + Bn
2 , 2K) ≤ N(Bn

2 , K) ≤ exp(Cn).

Using standard properties of covering numbers we obtain

N ((K + Bn
2 ) ∩ E, 4K ∩ E) ≤ exp(Cn).

This yields

N ((K + Bn
2 ) ∩ E, 4α(K + Bn

2 ) ∩ E) ≤ exp(Cn),

which is impossible by comparison of volumes and the condition on α.
Thus we have that f(·) ≥ R on ∂K ∩ E, that is, ‖x‖B ≥ R‖x‖K on E.

In particular,
Bn

2 ∩ E ⊂ RK ∩ E.

Applying Corollary 2.3 we obtain the desired result. 2

We conclude this section with a theorem providing a negative answer to
the problem stated in the Introduction. More precisely, this theorem gives
a characterization of bodies that satisfy the property in question by stating
that only essentially-Euclidean bodies can have it. The proof is very similar
to the proof of Theorem 4.2 and is provided for the sake of completeness.
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Theorem 4.3 Let α ≥ 1, R ≥ 3α, λ > 0. Assume that a symmetric convex
body K ⊂ Rn has the property “if dg(K,L) ≤ R for a symmetric convex body
L ⊂ Rn then there exists a subspace E ⊂ Rn of dimension at least λn and
such that dg(K ∩ E, L ∩ E) ≤ α.” Then K is λ-ess-Euclidean with

d(λ, ε) < C1C(ε, λ)R

(
λ log

2R

5α

)−1

,

where C(ε, λ) depends only on ε, λ, and C1 is an absolute positive constant.

Remark 1. One can check that in fact our proof works for every R > 2α
and gives

d(λ, ε) < C1C(ε, λ)
αR

R− 2α

(
λ log

2R

R + 2α

)−1

.

Remark 2. Note that Theorem 4.3 answers the question stated in the
Introduction.

Proof Without loss of generality we can assume that K is in a regular
M -position, that is, for every t > 0

N(K, tBn
2 ) ≤ exp (C0n/t) and N(Bn

2 , tK) ≤ exp (C0n/t)

(see the remark following Corollary 2.3).
Set r = λ

5C0
log 2R

5α
and consider the following two bodies

S := conv (K ∪ rBn
2 ) and L := S ∩RK.

Clearly, K ⊂ L ⊂ RK. Thus, by the property of the body K, there exists a
subspace E ⊂ Rn of dimension k ≥ λn and such that dg(K ∩E, L∩E) ≤ α.
This means that there is 0 < a ≤ R such that

a

α
K ∩ E ⊂ L ∩ E ⊂ aK ∩ E.

First we show that a < R. Assume that a = R. Then, clearly,

|L ∩ E| ≥
(

R

α

)k

|K ∩ E|.
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On the other hand,

N(L ∩ E, (5/2)K ∩ E) ≤ N(L, (5/4)K) ≤ N(K + rBn
2 , (5/4)K)

≤ N(rBn
2 , (1/4)K) = N(Bn

2 , (1/4r)K) ≤ exp (4C0rn).

Therefore,

|L ∩ E| ≤
(

5

2

)k

exp (4C0rn)|K ∩ E|.

This yields
R

α
≤ 5

2
exp (4C0r(n/k)),

which contradicts our choice of r (recall that k ≥ λn).
Now observe that since L ∩ E ⊂ aK ∩ E and a < R we have

S ∩ E ⊂ aK ∩ E.

Indeed, let x ∈ S ∩E. If x ∈ RK then x ∈ L∩E and the inclusion holds. If
x 6∈ RK then ‖x‖K > R. Define y = Rx/‖x‖K . Then ‖y‖K = R, y ∈ S ∩E,
y ∈ RK. Hence y ∈ L ∩E ⊂ aK ∩E. Thus ‖y‖K ≤ a. This contradicts the
fact ‖y‖K = R > a.

The inclusions S ∩ E ⊂ aK ∩ E ⊂ RK ∩ E imply

r

R
Bn

2 ∩ E ⊂ K ∩ E,

and the proof is completed by Corollary 2.3. 2

5 Properties “from coverings to sections”

We now introduce properties of convex bodies which we call “from cover-
ings to sections” and denote by c/s. They relate the covering number of
an arbitrary convex body by a given convex body to the geometric distance
between some sections of these bodies. There will be two underlying param-
eters A > 0 and R > 1, related to the covering and the distance, respectively,
which we usually omit in our notation.

Our results will use the following well-known immediate corollary of the
volume ratio theorem ([ST], see also [Pi], Chapter 6).
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Proposition 5.1 Let K ⊂ Rm be a convex body and E be an ellipsoid such
that

E ⊂ K and N(K, cE) ≤ Cm

for some constants C, c ≥ 1. Then for every k ≤ m there exists a k-
dimensional subspace E ⊂ Rm such that

E ∩ E ⊂ K ∩ E ⊂ dE ∩ E,

where
d ≤ (4πcC)m/(m−k) .

Proof The hypothesis clearly yields |K|/|E| ≤ (cC)m, hence the result
follows from the volume ratio theorem. 2

Remark Of course, Proposition 2.2 immediately implies Proposition 5.1,
with worse dependence of the distance d on parameters c, C, and m/(m−k).

5.1 Property c/s1.

We define property c/s1 as follows.
Let A > 0, R > 1. Let 0 < δ ≤ λ < 1. We say that a body K ⊂ Rn has

property (λ, δ)-c/s1 if for every body L ⊃ K satisfying N(L, K) ≤ exp(An)
the following holds. For every [λn]-dimensional E ⊂ Rn there exists a [δn]-
dimensional F ⊂ E such that L ∩ F ⊂ R(K ∩ F ).

Note that this property does not depend on the position of the body K,
that is, if K has c/s1 then so does TK for any linear invertible operator T .

Theorem 5.2 Let K be a symmetric convex body in Rn. Let A ≥ C + log 5
and R > 1, where C is the constant from the definition of an M-position.
Let 0 < δ ≤ λ < 1. If K has (λ, δ)-c/s1 then K is (λ, εδ)-ess-Euclidean
for every ε ∈ (0, 1). Conversely, if K is (λ, δ)-ess-Euclidean then K has
(λ, εδ)-c/s1 for every ε ∈ (0, 1).

Remark 1. The second part of the theorem is known. We provide a proof
for completeness.

Remark 2. The proof below gives in the first part d ≤ C(ε, δ)R, where
C(ε, δ) is the constant from Corollary 2.3, and in the second part R ≤
(8πd exp(A/δ))1/(1−ε).
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Proof Without loss of generality assume that K is in M -position. Consider
the body L = conv (K ∪Bn

2 ). Then

N(L, K) ≤ N(K + Bn
2 , K + K)N(2K, K) ≤ exp(Cn) 5n ≤ exp(An).

Observe that by property c/s1 for every [λn]-dimensional E ⊂ Rn there
exists a [δn]-dimensional F ⊂ E such that L ∩ F ⊂ RK ∩ F , which implies

Bn
2 ∩ F ⊂ RK ∩ F.

Applying Corollary 2.3, we obtain

1

R
Bn

2 ∩ F0 ⊂ K ∩ F0 ⊂ C(ε, δ) Bn
2 ∩ F0.

This implies the result with d = C(ε, δ)R.

To prove the second part of the theorem we assume that K is (λ, δ)-ess-
Euclidean and that L ⊃ K satisfies N(L, K) ≤ exp(An). By the definition we
have that for every [λn]-dimensional E ⊂ Rn there exists a [δn]-dimensional
F ⊂ E such that

E ∩ F ⊂ K ∩ F ⊂ d E ∩ F,

for some ellipsoid E . Then

N(L ∩ F, 2d E ∩ F ) ≤ N(L ∩ F, 2K ∩ F ) ≤ N(L, K) ≤ exp(An)

and E ∩ F ⊂ L∩ F . Proposition 5.1 applied to L∩ F and inclusion E ∩ F ⊂
K ∩ F imply the desired result with

R = (8πd exp(A/δ))1/(1−ε) .

2

5.2 Property c/s2.

Another property from coverings to sections, c/s2, is similar but slightly
stronger then property c/s1, as the requirement L ⊃ K is dropped.

Let A > 0, R > 1. Let 0 < δ ≤ λ < 1. We say that a body K ⊂ Rn

has property (λ, δ)-c/s2 if for every body L satisfying N(L, K) ≤ exp(An)
the following holds. For every [λn]-dimensional E ⊂ Rn there exists a [δn]-
dimensional F ⊂ E such that L ∩ F ⊂ R(K ∩ F ).

14



Similarly as before, c/s2 does not depend on the position of a body K.
Relation between property c/s2 and being essentially-Euclidean is the

same as for property c/s1 in Theorem 5.2, but in this case the restriction on
A becomes weaker (or actually unnecessary).

Theorem 5.3 Let K be a symmetric convex body in Rn. Let A ≥ C and
R > 1, where C is the constant from the definition of an M-position. Let
0 < δ ≤ λ < 1. If K has (λ, δ)-c/s2 then K is (λ, εδ)-ess-Euclidean for every
ε ∈ (0, 1). Conversely, if K is (λ, δ)-ess-Euclidean then K has (λ, εδ)-c/s2
for every ε ∈ (0, 1).

The proof repeats the argument of Theorem 5.2. The only difference
is that we consider L = Bn

2 instead of L = conv (K ∪Bn
2 ) and adjust the

covering estimates. Moreover, using a regular M -position (see the proof of
Theorem 4.3) one can prove the theorem for every A > 0.

5.3 Property c/s3.

We define one more property of the c/s-type, called c/s3. In the definition
below we identify Rn with the coordinate subspace of RN , N ≥ n, of vectors
having zeros at the last N − n coordinates.

Let A > 0 and R > 1. Let 0 < λ < 1. We say that a body K ⊂ Rn has
property λ-c/s3 if for every N , every body L ⊂ RN satisfying K = L ∩ Rn

and N(PL, K) ≤ exp(An) for some projection P from RN onto Rn the
following holds. There exists a [λn]-dimensional subspace E ⊂ Rn such that
(PL) ∩ E ⊂ RK ∩ E.

Remark Let L ⊂ RN be a body satisfying the two conditions above. Clearly
the projection P does not need to have a well bounded norm (in the norm
induced by L). However, in presence of property λ-c/s3, there exists an
F ⊂ RN of dimension N − n + [λn], that contains E and such that there
exists a bounded projection Q : F → E. Indeed, take F = kerP ⊕ E and
Q = P|F . Then, since E ⊂ Rn = ImP , we have

dimF = dim kerP + dimE = N − n + [λn]

and

Q(L ∩ F ) = P (L ∩ F ) = (P (L ∩ F )) ∩ E ⊂ RK ∩ E = RL ∩ E,

which means ‖Q : (F, L ∩ F ) → (E, L ∩ E)‖ ≤ R.
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Theorem 5.4 Let K be a symmetric convex body in Rn. Let A ≥ C + log 5
and R > 1, where C is the constant from the definition of an M-position.
Let 0 < λ < 1. If K has λ-c/s3 then K is λ-ess-Euclidean. Conversely, if
K contains an [λn]-dimensional section, which is d-Euclidean, then K has
(ελ)-c/s3 for every ε ∈ (0, 1).

Proof Let N = 2n. Let B ⊂ Rn be an M -ellipsoid for K. Define the
ellipsoid E ⊂ RN by

E = {(x, x) | x ∈ B} .

Let L be the convex hull of K ∪E and P be the orthogonal projection on Rn.
Then L ∩Rn = K and PL = conv (K ∪ B). As in the proof of Theorem 5.2
we obtain

N(PL, K) ≤ exp (An).

By property c/s3 it follows that there exists a [λn]-dimensional E ⊂ Rn such
that (PL)∩E ⊂ RK ∩E. Thus B∩E ⊂ RK ∩E. Since B is an M -ellipsoid
for K, applying Corollary 2.3 we obtain that for every ε ∈ (0, 1) there exists
a further [ελn]-dimensional subspace E1 of E such that

1

R
B ∩ E1 ⊂ K ∩ E1 ⊂ C(ε, λ) B ∩ E1.

Thus K∩E1 is (C(ε, λ)R)-Euclidean, which shows that K is λ-ess-Euclidean
with d = C(ε, λ)R.

The proof of the second part is similar to the proof of Theorem 5.2.
Assume that for a [λn]-dimensional E ⊂ Rn we have E ⊂ K ∩ E ⊂ dE for
some ellipsoid E ⊂ E. Assume that a body L ⊂ RN and a projection P from
RN onto Rn satisfy L ∩ Rn = K and N(PL, K) ≤ eAn. Then

N ((PL) ∩ E, 2dE) ≤ eAn.

By Proposition 5.1 applied to (PL) ∩ E we infer the existence of an [ελn]-
dimensional subspace F ⊂ E such that

(PL) ∩ F ⊂ (8πd exp(A/λ))1/(1−ε) E .

Since E ⊂ K ∩ E, the result follows. 2
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