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Abstract

Let K be a symmetric convex body in IRN for which BN
2 is the ellipsoid of minimal volume.

We provide estimates for the geometric distance of a “typical” rank n projection of K to Bn
2 , for

1 ≤ n < N . Known examples show that the resulting estimates are optimal (up to numerical
constants) even for the Banach–Mazur distance.

Résumé

French title here

Soit K un corps convexe symétrique de IRN dont l’ellipsöıde de volume minimal le contenant
est la boule euclidienne BN

2 . Nous estimons la distance géométrique de projections “typiques”
de rang n de K à la boule Bn

2 pour tout n ∈ {1, . . . , N − 1} (i.e. nous prouvons qu’il en existe
une vaste proportion au sens de la mesure de Haar sur la grassmanienne). Des exemples bien
connus permettent de dire que ces estimations sont optimales (à des constantes numériques
près), même pour la distance de Banach–Mazur.

Précédemment, des résultats sur l’existence de projections orthogonales de K (ou d’un
vaste ensemble de telles projections si l’on ajoute une restriction sur leur rang) avec un bon
contrôle de la distance à la boule euclidienne ont été prouvés dans [11] et [13], et dans un
cadre gaussien dans [4] et [3]. Dans cette note, nous donnons une preuve unifiée de l’existence
de projections orthogonales “typiques” pour toutes les valeurs de la dimension n.

Comparés aux précédents arguments connus, notre preuve repose sur deux nouveaux
ingrédients. Tout d’abord, nous utilisons un résultat de [7] qui permet de réduire l’étude
du rayon d’une boule euclidienne inscrite dans des projections aléatoires d’un corps convexe
à la même question posée pour une boule euclidienne inscrite dans une section fixée du corps
convexe. Le second ingrédient est un résultat de Vershynin [15] qui nous permet de trouver
un sous-ensemble de points de contact équivalent à un système orthonormal.
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The main result of this note is Theorem 1 below, which generalizes various extensions of Dvoret-
zky’s theorem proved by Milman and Schechtman in [11], [13] (see also [3], [4], [6]). It provides
estimates for radii of Euclidean balls inscribed and superscribed into a “typical” projection of a
symmetric convex body K with respect to the natural Euclidean structure induced by the ellipsoid
of minimal volume. The existence (rather than “typicality”) of projections with good control of
the radii was proved in [13], and the result for “typical” projections was proved in [11] and [13] for
a limited range of dimensions. In this note we provide a uniform proof for typical projections over
the full range of dimensions.

Similarly as in [11] our proof follows a general line of [8], and compared with previous arguments
it is based on two new ingredients. Firstly, we use a result from [7] which reduces the estimates for
radii of a Euclidean ball inscribed in random projections of a convex body to a similar question
inside any fixed section of the body ((∗) below). The second fact is a result of Vershynin [15] which
provides a subset of contact points well equivalent to an orthonormal system ((∗∗) below).

We also prove, in Proposition 4, a related simple optimization fact which states that the regular
cube has the maximal Gaussian measure among all parallelopipeds inscribed in a Euclidean ball.
This can be viewed as a complementary result to Gluskin’s minimization theorem [1], which was
also closely related to the Gluskin’s lemma used in [13].

The example of the unit ball in `n
1 shows that the estimates in Theorem 1 are optimal (up to

numerical constants), even if the “geometric distance” is replaced by the smaller Banach–Mazur
distance to the Euclidean ball.

Acknowledgement: The authors thank Roman Vershynin for pointing out to them his theo-
rem from [15]. They are very grateful to Gideon Schechtman for his comments on the first version
of this note. They are also very grateful to Olivier Guédon for translating the extended abstract
into French.

For N ≥ 1, by {ei}N
i=1 we denote the canonical vector basis in IRN , equipped with the Euclidean

norm ‖ · ‖2. The unit ball with respect to ‖ · ‖2 will be denoted by BN
2 , while BN

∞ will stand for
the set of all x =

∑
tiei ∈ IRN such that |ti| ≤ 1 for all 1 ≤ i ≤ N . GN,k will be the set of all k

dimensional subspaces of IRN equipped with the normalized Haar measure µ. For H ∈ GN,k, by
PH we denote the orthogonal projection onto H. For a symmetric convex body K in IRN we let
k∗(K) to be the maximal dimension k such that for some constant a > 0 we have

µ
{
H ∈ GN,k | aPH(BN

2 ) ⊂ PH(K) ⊂ 4aPH(BN
2 )
}
≥ 1− e−k,

cf., [12], [9], and [7] (1.2) for the measure concentration used here.

Theorem 1 There exist constants c, c′ > 0 such that for every N ≥ 1 and every symmetric convex
body K in IRN for which the unit Euclidean ball BN

2 is the ellipsoid of minimal volume containing
K, and every k∗(K) ≤ n ≤ N , we have

µ{H ∈ GN,n | c
√

log(N/n)/NPHBN
2 ⊂ PH(K) ⊂ c−1

√
n/NPHBN

2 } ≥ 1− e−c′n.

The existence of an H ∈ GN,n satisfying the inclusions defining the set above was proved in
[13], and Theorem 1 in the range 1 ≤ n ≤ cN/ log N was proved in [11] and [13] (see the Remark
on page 162 of [13]). Here we provide a uniform proof of the measure estimates over the full range
of dimensions.

Clearly, by the definition of k∗, PH(K) concentrates around aPH(BN
2 ), for 1 ≤ k ≤ k∗(K). For

k ≥ k∗(K), the fact that the right hand side inclusion holds with probability ≥ 1 − e−c′n is the
well known “shrinking” principle for the diameter of random projections of an arbitrary convex
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body, cf., [9] (also see [7], Proposition 4.3 for the formulation). The proof of the fact that the left
hand side inclusion in the statement of Theorem 1 holds with probability ≥ 1− e−c′n depends in
an essential way on a result from [7], Proposition 3.2 which yields:

(∗)There exists a constant c̄ > 0 such that for an arbitrary symmetric convex body K0 in an
N/2 dimensional subspace F of RN , and for every n ≤ N/4 we have

µ{H ∈ GN,n | PH(K0) ⊃ c̄PHBN
2 } ≥ µ{H ∈ GF,n | PH(K0) ⊃ PHBN

2 } − e−c̄n.

Therefore, for n ≤ c̃N setting K0 = K ∩F the left hand side inclusion is a formal consequence
(with different constants) of the following statement. The case n > c̃N is trivial.

Proposition 2 There exist constants c, c′ ≥ 0 and 0 < c̃ < 1/4 such that for every K ⊂ IRN as
in Theorem 1 there exists a N/2 dimensional subspace F ⊂ IRN such that for every 1 ≤ k′ ≤ c̃N
we have

µ{H ∈ GF,k′ | PH(K ∩ F ) ⊃ c
√

log(N/k′)/NPHBN
2 } ≥ 1− e−c′k′

.

The choice of a subspace F will depend on the existence of contact points of the body K and
BN

2 which are well equivalent to an orthonormal system. Recall that vectors {zi}m
i=1 in IRm are

said to satisfy a lower `2 estimate with constant A1 > 0 and an upper `2 estimate with constant
A2 provided that

(1/A1)
( m∑

i=1

t2i

)1/2

≤
∥∥∥ m∑

i=1

tizi

∥∥∥
2
≤ A2

( m∑
i=1

t2i

)1/2

,

for all scalars t1, . . . , tm.
Another crucial ingredient in our proof is a consequence of a recent result of Vershynin [15],

Corollary 5.1, which can be formulated as follows:
(∗∗) For every K as in Theorem 1 there are m ≥ N/2 contact points z1, . . . , zm (i.e., ‖zi‖K =

‖zi‖K0 = ‖zi‖2 = 1 for i = 1, . . . ,m) which satify lower and upper `2 estimates with constants
A1 = A2 = C, where C > 0 is a numerical constant.

Thus Theorem 1 reduces to

Proposition 3 Let m ≥ 1 and let {zi}m
i=1 in IRm satisfy lower and upper `2 estimates with con-

stants A1 and A2, respectively. There exist universal constants c, c′ > 0 and c̃ = c̃(A1, A2) > 0
depending on A1, A2 only such that for every 1 ≤ k′ ≤ c̃m we have

µ
{

H ∈ Gm,k′ | sup
1≤i≤m

|(x, zi)| ≥ c
√

log(m/k′)/m for x ∈ Sm−1 ∩H
}
≥ 1− e−c′k′

. (1)

Indeed, assuming the validity of Proposition 3, Proposition 2 can be proved for F = span [zi]mi=1.
Identify this F with IRm. Since K ∩F ⊃ conv (±zi)m

i=1, it is easy to see by duality that for a given
H ∈ Gm,k′ the condition sup1≤i≤m |(x, zi)| ≥ c

√
log(m/k′)/m for all x ∈ Sm−1 ∩ H implies the

inclusion PH(K ∩ F ) ⊃ c
√

log(N/k′)/NPHBN
2 . Thus Proposition 2 follows.

Proof of Proposition 3 Fix 1 ≤ k ≤ m and a partition {σj}k
j=1 of {1, 2, . . . ,m} into

mutually disjoint subsets with [m/k] ≤ |σj | ≤ [m/k] + 1 for all 1 ≤ j ≤ k. Define the norm ·
on IRm by

x = (1/k)
k∑

j=1

sup
i∈σj

|(x, zi)| for x ∈ IRm. (2)
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We prove an estimate analogous to (1) for the norm · , and we shall work in the Gaussian
setting. Recall that a random vector g ∈ IRm of the form g =

∑m
i=1 γ̃iei, where γ̃i are independent

N(0, 1) distributed Gaussian variables, is called a standard Gaussian vector. The usual approach
requires a lower estimate for the expected value IE g , and an upper estimate for the Lipschitz
constant of · .

Let {z′i}m
i=1 in IRm be the biorthogonal system to {zi}m

i=1; thus {z′i}m
i=1 satisfies lower and upper

`2 estimates with constants A2 and A1, respectively. It easily follows from the lower `2 estimate for
{z′i}’s that · satisfies the Lipschitz condition with respect to the Euclidean norm with constant
A2/

√
k. First we show that there is an absolute constant c1 > 0 such that

IE g ≥ (c1/A1)
√

log(1 + m/k). (3)

Observe first that for any 1 ≤ ` ≤ m we have

IE sup
1≤i≤`

|(g, zi)| ≥ (c1/A1)
√

log(` + 1), (4)

where c1 > 0 is an absolute constant. Indeed, by Sudakov’s minoration theorem (cf., e.g., [14],
Theorems 5.5 and 5.6) we have

IE sup
1≤i≤`

|(g, zi)| ≥ c1 sup
ε>0

ε
√

log(1 + N(ε)),

where for a given ε > 0, by N(ε) we denote the covering number N(conv {±zi}1≤i≤`, εB
m
2 ),

i.e., the smallest number N of balls εBm
2 which shifts can cover the set conv {±zi}1≤i≤`. Since

‖zi − zi′‖ ≥
√

2/A1 for all 1 ≤ i, i′ ≤ `, i 6= i′, (4) immediately follows (with a different constant
c1). Then (3) follows by the definition (2) of · .

We give a few more details of Proposition 3. Let k′ = [α(c1/A1A2)2k], where 0 < α < 1 will
be determined later. Let Γ denote an m × k′ matrix with independent Gaussian N(0, 1) entries.
We shall treat Γ as the operator Γ : IRk′

→ IRm.
Fix β > 0 sufficiently small. Since the Lipschitz constant of · is less than or equal to A2/

√
k,

by the standard Gaussian deviation inequality we get, for all x ∈ Sk′−1

IP
{∣∣ Γx − IE Γx

∣∣ ≤ (βc1/A1)
√

log(1 + k/m)
}
≥ 1− 2(k/m)(βc1/A1A2)

2k/2.

Combining (3) with a standard ε-net argument (cf., e.g., [10]), and chosing a suitable ε > 0, we
obtain

IP
{

Γx ≥ (βc1/2A1)
√

log (1 + m/k) for x ∈ Sk′−1
}
≥ 1− e−k′

, (5)

provided that k ≤ δm < m and we chose α > 0 to satisfy (3/ε)−k′
2δ(αc1/A1A2)

2k/2 ≤ e−k′
.

Since sup1≤i≤m |(x, zi)| ≥ x for all x ∈ IRm, (1) follows from (5) by a standard argument. 2

Remark The proof above does not use the full strength of the lower `2 estimate, but only a
weaker fact that the vectors {zi} are well separated.

We next prove a related result which can also provide an alternative proof of (3). Namely, using
Proposition 4 one easily shows that if {zi} are as in Proposition 3 then we have IP{sup1≤i≤` |(g, ei)| >
t} ≤ IP{sup1≤i≤` |(g, zi)| > t/A1}, for all t > 0. Proposition 4 is a natural maximization result
which might be of an independent interest, and we provide a sketch of its proof.

4



Proposition 4 Let n ≥ 1 and let g be a standard Gaussian vector in IRn. Let y1, . . . , yn ∈ IRn

and let Q =
∑n

i=1[−yi, yi] be the parallelopiped generated by the yi’s. If Q ⊂
√

nBn
2 then for an

arbitrary t > 0 we have IP{g ∈ tQ} ≤ IP{g ∈ tBn
∞}.

Proof It suffices to prove that for every a > 0, the inclusion Q ⊂ aBn
2 implies IP{g ∈ Q} ≤ IP{g ∈

(a/
√

n)Bn
∞}. To this end set Q∗ =

∑n−1
i=1 [−yi, yi]. Clearly we may assume that Q∗ ⊂ IRn−1 =

span [ei | 1 ≤ i ≤ n− 1].
Write yn in the form yn = v + ten, where v ∈ IRn−1. Replacing yn by −yn if needed we may

assume that t > 0. Let y be any vertex of Q∗. By the parallelogram identity applied to y and yn,
using the fact that Q ⊂ aBn

2 , we get a2 ≥
(
‖y + yn‖22 + ‖y − yn‖22

)
/2 = ‖y‖22 + ‖v‖22 + t2. Hence

Q∗ ⊂
√

a2 − t2Bn−1
2 .

For k ≥ 1 by γk denote the standard Gaussian measure on IRk, so that we have γk(B) = IP{g ∈
B} for every Borel subset B of IRk. For s ∈ IR, let IRn−1

s = IRn−1 + sen, and let γn−1,s(B + sen) =
γn−1(B) for every Borel subset B of IRn−1. Observe that for |s| ≤ t we have Q ∩ IRn−1

s =
Q∗ + (s/t)yn = (Q∗ + sen) + (s/t)v. Thus, by Anderson’s inequality (cf., e.g., [5], Sec. 11, Th. 9),
we have

γn−1,s(Q ∩ IRn−1
s ) ≤ γn−1,s(Q∗ + sen) = γn−1(Q∗). (6)

The proof of the proposition will be completed by induction. For n = 1 the statement is trivial.
Assume the statement for n− 1. Since Q∗ ⊂

√
a2 − t2Bn−1

2 , by the induction hypothesis and (6),
for every |s| ≤ t we get γn−1,s(Q ∩ IRn−1

s ) ≤ γn−1(bBn−1
∞ ), where b =

√
(a2 − t2)/(n− 1). Thus

γn(Q) =
∫ t

−t

γn−1,s(Q ∩ IRn−1
s ) e−s2/2 ds√

2π
≤ (2π)−n/2

∫ t

−t

e−s2/2 ds

(∫ b

−b

e−s2/2 ds

)n−1

. (7)

Consider the function f(h) =
∫ h

0
e−s2/2ds for h ≥ 0 and note that f is increasing while f ′ is

decreasing. The inequality (7) can be expressed as

γn(Q) ≤ (2/π)n/2f(a cos α)fn−1((a sinα)/
√

n− 1) =: Φ(α), (8)

where α ∈ [0, π/2] is defined by the equality cos α = t/a (note that clearly t ≤ a). Now, using
the fact that the functions f ′ and cos α are decreasing while the functions f and sinα are increas-
ing we deduce that Φ′ has only one zero in (0, π/2), which is attained at the point β satisfying
sinβ/

√
n− 1 = cos β. This yields sinβ =

√
(n− 1)/n and cos β = 1/

√
n. Since Φ is nonnegative

and Φ(0) = Φ(π/2) = 0 we infer that Φ attains its maximum at β. In view of (8) the proof is
completed by observing that Φ(β) = γn((a/

√
n)Bn

∞). 2

Remark The results of [11] and [13] were extended to the non-symmetric case by two different
approaches in [3] and [6] (with the former paper giving randomness of projections for the limited
range of ranks). In the present formulation Theorem 1 holds for nonsymmetric body K and n ≤ αN
for some 0 < α < 1 (and hence for n ≤ βN for every 0 < β < 1, with constants depending on
β). Indeed, one can check that (∗) and (∗∗) remain valid for nonsymmetric bodies. Our argument
can be adopted to the nonsymmetric case by replacing |(x, zi)| with (x, zi) ∨ 0 in the definition of
· .

Remark In [4] and [3] techniques developed in [2] were used to obtain an upper bound for the
minimal Banach-Mazur distance of an n-dimensional section of an arbitrary N -dimensional convex
body to the n-dimensional Euclidean ball, similar as in [11] and [13]. The same techniques may
be used in our context as well.
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[3] Y. Gordon, O. Guédon & M. Meyer: An isomorphic Dvoretzky theorem for convex bodies; Studia Math.,
127 (1998), 191–200.
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