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Abstract

We study the dimension of “random” Euclidean sections of direct
sums of normed spaces. We compare the obtained results with results
from [LMS], to show that for the direct sums the standard randomness
with respect to the Haar measure on Grassmanian coincides with a
much “weaker” randomness of “diagonal” subspaces (Corollary 1.4
and explanation after). We also add some relative information on
“phase transition”.

0 Introduction

Since the Dvoretzky theorem, the structure of Euclidean sections of finite-
dimensional normed spaces is the best understood subject of the Asymptotic
Theory of normed spaces. In spite of that some interesting observations are
still left unnoticed. In this note we study the largest integer k such that a
“generic” k-dimensional subspace of an N -dimensional normed space is Eu-
clidean, up to a factor 4, say. Usually “generic” means for us “with high
probability”, for some natural probability distribution on the Grassmanian
GN,k. However in some cases one can introduce another natural probability
distribution. Of course, the meaning of the word “generic” will be different in
different cases, thus the different answers can be naturally expected. Surpris-
ingly, in the case we study these answers essentially coincide (Corollary 1.4).
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Our note is closely related to [LMS], where several instances of a phase
transition behavior were discovered. We recall some of them and, summa-
rizing some old and new facts, add more phase transitions to the behavior
of the distance function to the Euclidean space of “generic” k-dimensional
subspaces of the family of `n

q subspaces.

1 Direct sum of normed spaces

Given an integer m we denote by | · | and 〈·, ·〉 the canonical Euclidean norm
on IRm and the canonical inner product. Gm,k denotes the Grassmanian
of all k-dimensional subspaces of IRm and µ = µGm,k

denotes the canonical
normalized Haar measure on the Grassmanian. By e1, ..., em we denote the
canonical orthonormal basis.

By gi, gij, we always denote the independent standard Gaussian random
variables.

Given an m-dimensional space Z = (IRm, ‖ · ‖, | · |) and q > 1 we denote

b(Z) := max
x6=0

‖x‖/|x| = ‖Id : `m
2 → Z‖ ,

Mq :=
(∫

Sm−1
‖x‖qdν

)1/q

,

where dν is normalized Lebesgue measure on Sm−1, and

Eq(Z) =

(
E

∥∥∥∥∥
m∑

i=1

giei

∥∥∥∥∥
q)1/q

.

Let A and B be some parameters or functions. We denote A ≈ B if there
exist positive absolute constants c and C such that cA ≤ B ≤ CA. It is
well-known (and can be directly computed) that

Eq(Z) ≈
√

m + qMq(Z). (1)

As usual d(X, Y ) denotes the Banach-Mazur distance between spaces X and
Y , i.e.

d(X, Y ) = inf
{
‖T‖ · ‖T−1‖ | T : X → Y is an invertible linear operator

}
;
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dX denotes d(X, `k
2), where k = dim X. We also denote the maximal dimen-

sion of a “random” Euclidean section of Z by k(Z), i.e. k(Z) =

max {k | µ ({E ∈ Gm,k | (M1/2)|x| ≤ ‖x‖ ≤ 2M1|x| for all x ∈ E}) > 1/2}.

It was proved in [MS2] that k(Z) ≈ (E1(Z)/b(Z))2. Note that it is known
that changing k(Z) to ck(Z) for some absolute constant c > 0 we increase
the measure µ of such “almost” Euclidean subspaces to 1− e−k.

We also recall the following result from [LMS].

Lemma 1.1 Let 1 ≤ q ≤ m. There exist absolute positive constants c, C
such that

max

{
M1, c

b
√

q√
m

}
≤ Mq ≤ max

{
2 M1, C

b
√

q√
m

}
.

In other words

(i) Mq(Z) ≈ M1(Z), for 1 ≤ q ≤ k(Z),

(ii) Mq(Z) ≈ b(Z)
√

q
m

, for k(Z) ≤ q ≤ m,

(iii) Mq(Z) ≈ b(Z), for q > m.

Fix now an n-dimensional normed space X = (IRn, ‖ · ‖, | · |). Let

Y = Yq = ⊕t
1X

be nt-dimensional space with the norm defined by

‖y‖Y = ‖y‖q =

(
t∑

i=1

‖xi‖q/t

)1/q

,

where y = (x1, x2, ..., xt) ∈ Y . Below by log t we always mean the logarithm
with the fixed base a, where a > 1 is an absolute positive constant, which will
be specified later in the proof of Theorem 1.2, Case 3. Clearly, if q ≥ log t
then

‖y‖log t ≤ ‖y‖q ≤ ‖y‖∞ = max
i
‖xi‖ ≤ a‖y‖log t.

So we consider the case q ≤ log t only.
For simplicity we denote b(X), Mq(X), Eq(X) by b, Mq, Eq correspond-

ingly.
The main computation we would like to present is combined in the fol-

lowing

3



Theorem 1.2 Let t be an integer, q ∈ [1, log t] and α = 1/ max{2, q}. Then
we have

k(Y ) ≈ t2α max {k(X), q}.

The main interest of this formula lies in comparison with the following
result from [LMS]:

Theorem 1.3 Let q > 1. Let tq = tq(X) be the smallest integer such that
there are orthogonal transformations u1, . . . , ut ∈ O(n) with

Mq

2
|x| ≤

(
1

t

t∑
i=1

‖uix‖q

)1/q

≤ 2Mq|x|, for all x ∈ IRn . (2)

Then for q ≤ n one has

t2α
q ≈ n

max {k(X), q}
,

α = 1/ max{2, q}. Moreover the “random” choice of orthogonal transforma-
tions gives, with the probability exponentially close to one, the same estimate
as the best one, i.e. there exists an absolute constant c0 such that for a ran-
dom choice of independent rotations u1, ..., ut with t2α ≥ c0n/ max {k(X), q}
one has (2).

The following Corollary is immediately implied by Theorems 1.2, 1.3 (the
restriction q ≤ cn is needed to satisfy condition q ≤ log t in the case q ≥
k(X)).

Corollary 1.4 Let X, Y be defined as above. Let t be such that k(Y ) = n.
Then

t2α ≈ t2α
q

for q ≤ cn, where α = 1/ max{2, q} and c is an absolute constant.

The meaning of the equivalence in this Corollary should be explained. It
shows that in some sense the randomness with respect to the Haar measure on
Grassmanian Gtn,n coincides with a much “weaker” randomness of “diagonal”
subspaces. More precisely, given n-dimensional space X let Y = Yq be as
above and let ū = (u1, ..., un) : Y −→ Y , ui ∈ O(n), be the linear operator
defined by ūy = (u1x1, ..., utxt). By a “diagonal of ūY ” we mean the subspace
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of all vectors (u1x, u2x, ..., utx) ∈ Y , x ∈ X. We are looking for t such that
for a random ū ∈ ∏t

1 O(n) this diagonal is equivalent to the Hilbert space,
i.e. for every x

‖y‖q =

(
t∑

i=1

‖uix‖q/t

)1/q

≈ Mq|x|.

The two previous theorems show that the answer to this question is the same
as the answer to the question for what t we have k(Y ) = n, which means
that Gtn,n-random subspace is Euclidean. Let us emphasize again that in the
first question (Theorem 1.3) we take t “random” operators and “diagonal of
Y ”, but in the second (Theorem 1.2), in fact, we take the random operator
on the group O(tn).

To prove Theorem 1.2 we need the following lemma.

Lemma 1.5 Let t be an integer, q ∈ [1,∞) and α = 1/ max{2, q}. Then we
have

(i) b(Y ) = t−αb,

(ii) E1 ≤ E1(Y ) ≤ Eq(Y ) = Eq,

(iii) M1 ≤ c1

√
t M1(Y ) ≤ c2

√
t + q/n Mq(Y ) ≈

√
1 + q/n Mq, where c1, c2

are absolute positive constants.

Proof: Let y = (x1, x2, ..., xt) ∈ Y . Then by the definition of the norm on
Y and of the b = b(X) we have

‖y‖ ≤ t−1/qb
(∑

|xi|q
)1/q

≤ t−αb
(∑

|xi|2
)1/2

= t−αb|y|.

Thus b(Y ) ≤ t−αb. To get the equality it is enough to take y = (x0, x0, ..., x0)
if q ≤ 2 and y = (x0, 0, ..., 0) if q ≥ 2, where x0 ∈ X is such that ‖x0‖ = b|x0|.

Denote by {eij}, i ≤ n, j ≤ t the canonical basis of IRnt = ⊕t
1IR

n. Clearly,

E1 = E

∥∥∥∥∥
n∑

i=1

giei

∥∥∥∥∥ = E
t∑

j=1

1

t

∥∥∥∥∥
n∑

i=1

gijeij

∥∥∥∥∥ ≤ E

 t∑
j=1

1

t

∥∥∥∥∥
n∑

i=1

gijeij

∥∥∥∥∥
q
1/q

=

E1(Y ) ≤ Eq(Y ) =

 E
t∑

j=1

1

t

∥∥∥∥∥
n∑

i=1

gijeij

∥∥∥∥∥
q
1/q

= Eq(X).
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The last inequality follows from (1). 2

Proof of theorem 1.2.
Case 1. q ≤ max{k(X), 2}. (Then, by Lemma 1.1, Eq ≈ E1.)
In this case we have

k(Y ) ≈ (E1(Y )/b(Y ))2 ≤ (Eq(Y )/b(Y ))2 =

t2α (Eq/b)
2 ≈ t2α (E1/b)

2 ≈ t2αk(X).

On the other hand

k(Y ) ≈ (E1(Y )/b(Y ))2 ≥ (E1/b(Y ))2 = t2α (E1/b)
2 ≈ t2αk(X).

We turn now to the cases when q ≥ max {2, k(X)}. Then α = 1/q.

Case 2. k(X) < q ≤ k(Y ). (Then, by Lemma 1.1, Eq(Y ) ≈ E1(Y ).)
We obtain

k(Y ) ≈ (E1(Y )/b(Y ))2 ≈ (Eq(Y )/b(Y ))2 = t2α (Eq/b)
2 ≈

t2α(q + n) (Mq/b)
2 ≈ t2α(q + n)

min {q, n}
n

≈ t2αq.

Case 3. k(Y ) < q ≤ log t.
We show that this case is impossible for an appropriate choice of the base of
the logarithm. Indeed, using Lemma 1.1 we obtain

Mq ≈
√

min {q, n}
n

b thus Eq ≈
√

q + n Mq ≈
√

q b,

and

Mq(Y ) ≈
√

q

nt
b(Y ) ≈

√
q

nt
t−αb thus Eq(Y ) ≈ √

q t−αb.

But Eq = Eq(Y ), therefore tα ≤ c, i.e. t ≤ cq for some absolute con-
stant c > 1. Letting a > c we obtain a contradiction with the condition
q ≤ log t = loga t. 2

Finally we would like to reformulate Theorem 1.3. The theorem, in par-
ticular, shows that “randomly” defined tq has, up to an absolute constant, the
same bounds as tq. I.e. a random choice of independent rotations gives “al-
most” the same result as the best possible one. The theorem below provides
the estimates. Note that tq in it is defined slightly differently.
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Theorem 1.6 Let 2 < q ≤ n, X be an n-dimensional normed space, b =
b(X), and Mq = Mq(X). Let 1 < A < b/Mq and tq = tq(X,A) be the smallest
integer such that there are orthogonal transformations u1, . . . , ut ∈ O(n) with

(
1

t

t∑
i=1

‖uix‖q

)1/q

≤ AMq|x| for all x ∈ IRn .

Let c, C be the constants from Lemma 1.1.
There exists an absolute constant c0 > 1 such that if tq ≥ (c0b/M2)

2 and
q ≤ n/(eC2A2) then with high probability a random choice of tq independent
rotations u1, . . . , utq ∈ O(n) gives

c1Mq|x| ≤

 1

tq

tq∑
i=1

‖uix‖q

1/q

≤ 2c0AMq|x| for all x ∈ IRn ,

where

1/c1 = (3C/c)

√√√√1 + 2
ln(c0CA/c)

ln(n/(qC2A2))
.

Moreover, if q ≤ k(X) then c1 can be replaced with an absolute positive
constant.

Remark 1. The restriction q ≤ n/(eC2A2) seems to be reasonable, since
otherwise, by Lemma 1.1, we have b ≤ (2C/c)AMq, i.e. ‖x‖ ≤ (2C/c)AMq|x|
for every x ∈ IRn.

Remark 2. In particular, if C3A3q ≤ n then we can substitute the constant
c1 with an absolute positive constant. More precisely, if (CA)2+εq ≤ n,
ε ∈ (0, 1] then

1/c1 ≤ (9C/c)

√
ln(c0/c)

ε
.

The theorem follows immediately from results proven in [LMS]. For com-
pleteness we show the proof.

Proof: First we define c0. Let c0 ≥ max {4, C2} be such that given 1 ≤ p ≤ n
one can apply “moreover” part of Theorem 1.3 for

t2α = t2/ max {2,p} ≥ c0 min {(b/M2)
2, n/p}
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rotations. Such c0 exists, since k(X) ≈ (M2/b)
2n.

Now let s be the largest number such that

tq ≥ (c0b/Ms)
s .

(Of course we may assume that s exists and that tq = (c0b/Ms)
s .)

Clearly, tq = (c0b/Ms)
s increases when s grows. Since tq ≥ (c0b/M2)

2 we
have s ≥ 2. Thus, by Lemma 1.1,

t2/ max {2,s}
q = t2/s

q = c2
0(b/Ms)

2

is larger than (c2
0/4)(b/M2)

2 for small s (namely s ≤ k(X)) and is larger than
(c2

0/C
2)(n/s) for large s. Hence, by the choice of c0, we can apply “moreover”

part of Theorem 1.3 and obtain that random choice of tq rotations satisfies

Ms

2
|x| ≤

 1

tq

tq∑
i=1

‖uix‖s

1/s

≤ 2Ms|x| for all x ∈ IRn.

If s > q we are done. Assume s ≤ q. Then we have 1

tq

tq∑
i=1

‖uix‖s

1/s

≤

 1

tq

tq∑
i=1

‖uix‖q

1/q

≤ t1/s−1/q
q

 1

tq

tq∑
i=1

‖uix‖s

1/s

.

Thus to prove the theorem it is enough to show that

c1Mq ≤ Ms/2 and t1/s−1/q
q Ms ≤ cAMq.

By Theorem 2.3.1 of [LMS] and definition of tq we obtain

tq =

(
c0b

Ms

)s

≥
(

b

AMq

)q

. (3)

This immediately implies the upper estimate. The lower estimate follows
from Lemma 1.1. Indeed, if q ≤ k(X) then Mq ≈ M2 ≈ Ms. Let q ≥ k(X).
By Lemma 1.1 and (3) we observe(

1

CA

√
n

q

)q

≤
(

c0

c

√
n

s

)s

.
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Denote c2 = c0/c, CA = CA and a = q/s. Then we have

a ln
(
n/
(
qC2

A

))
≤ ln

(
ac2

2n/q
)
,

which implies

a ≤ ln a +
ln (c2

2n/q)

ln (n/ (qC2
A))

= ln a + 1 + 2
ln(c2CA)

ln (n/ (qC2
A))

.

Thus a ≤ 2
(
1 + 2 ln(c2CA)

ln(n/(qC2
A))

)
. Applying Lemma 1.1 again we obtain

Mq

Ms/2
≤ (2C/c)

√
a.

That concludes the proof. 2

2 More on Euclidean sections of `q.

Lemma 1.1 and Theorems 1.2 and 1.3 provide a few cases of a so-called
“phase transition” phenomenon in high-dimensional theory. Functions which
describe behavior of some important parameters of the space are changing
their analytic description at specific values. Of course, in the Asymptotic
Theory all functions are described in an isomorphic form, i.e. up to some
universal factors. In this section we will interpret a result from [GGMP] on
distances of k-dimensional “random” subspaces of `q to the Euclidean space
to emphasize phase transition of the distance function. This complements,
in our mind, phase transitions we studied above for `q-sum of spaces. The
following theorem combines some classical well-known facts with new infor-
mation from [GGMP].

Theorem 2.1 Let 2 ≤ q ≤ (ln n)/2. There are absolute positive constants
c1, c2, c3 such that for every k ≤ n a “random” k-dimensional subspace
F ⊂ `n

q satisfies

(i)
dF ≤ 3

for k ≤ c1qn
1/q,
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(ii)

dF ≤ c3

√
k

n1/q√q

for c1qn
1/q ≤ k ≤ c2e

−qqn,

(iii)

dF ≤ c3

√
k

n1/q
√

ln(2n/k)

for c2e
−qqn ≤ k.

Let us note that the case (i) is well-known (see e.g. [MS1]). The estimates
with some constant Cq depending on q only instead of

√
q (in the case (ii))

or
√

ln(2n/k) (in the case (iii)) were also known earlier ([MS1]).

Remark. We would like to emphasize that the estimates are sharp up
to absolute constants. Moreover, each subspace of `q (not only “random”)
satisfies the lower estimates of the same order. (For the case (ii) see e.g. [CP,
GGMP, MS1], the case (iii) follows, since for any k-dimensional subspace

E ⊂ `n
∞ one has dE ≥ c

√
k√

ln(2n/k)
(see e.g. [BLM, CP, G1]). Indeed, let Ē be

a k-dimensional subspace of IRn, E be Ē endowed with ‖ · ‖∞, and F be Ē
endowed with ‖·‖q. Then, since n−1/q‖x‖q ≤ ‖x‖∞ ≤ ‖x‖q for every x ∈ IRn,
we have

dE ≤ d(E, F )dF ≤ n1/qdF ,

which implies the estimate.)

Taking into account the remark above we can reformulate the previous
theorem in the following way

Theorem 2.2 Let c1, c2, c3 be the positive constants from Theorem 2.1. Let
n, k be integers satisfying c1e

2 ln n ≤ k ≤ 2c1n. Let q0 and q1 be numbers
defined by equations

k = c1q0n
2/q0 and k = c2e

−q1q1n,

thus
2 ln n

ln(k/(c1 ln n)) + ln ln(k/(c1 ln n))
≤ q0 ≤

2 ln n

ln(k/(c1 ln n))
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and
ln(c2k/n) ≤ q1 ≤ ln(c2k/n) + ln ln(c2k/n)2.

Then there is a positive constant c4 such that for a “random” k-dimensional
subspace F ⊂ `n

q we have

(i)
1 ≤ dF ≤ 3

for 1 ≤ q ≤ q0,

(ii)

c4

√
k

n1/q√q
≤ dF ≤ c3

√
k

n1/q√q

for q0 ≤ q ≤ q1,

(iii)

c4

√
k

n1/q
√

(2n/k)
≤ dF ≤ c3

√
k

n1/q
√

ln(2n/k)

for q1 ≤ q ≤ (ln n)/2.

Let us note that the restriction q ≤ (ln n)/2 can be omitted, since for
larger q the space `n

q is equivalent to the space `n
∞ (in fact, d(`n

q , `
n
∞) ≤ e2)

and for `n
∞ the inequality in the item (iii) is well known ([G2]). Therefore,

the distance function dF for a “random” k-dimensional subspace of `q, as a
function by q, 1 ≤ q, has two points of phase transition q0 and q1.
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