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Abstract

Let Dn,d be the set of all directed d-regular graphs on n vertices. Let G be a graph chosen uniformly at random
from Dn,d and M be its adjacency matrix. We show that M is invertible with probability at least 1−C ln3 d/

√
d

for C ≤ d ≤ cn/ ln2 n, where c, C are positive absolute constants. To this end, we establish a few properties of
directed d-regular graphs. One of them, a Littlewood–Offord type anti-concentration property, is of independent
interest: Let J be a subset of vertices of G with |J | ≤ cn/d. Let δi be the indicator of the event that the vertex
i is connected to J and δ = (δ1, δ2, ..., δn) ∈ {0, 1}n. Then δ is not concentrated around any vertex of the cube.
This property holds even if a part of the graph is fixed.

Résumé

Propriété d’anti-concentration pour les digraphes aléatoires et invertibilité de leur matrice d’adja-
cence. Soit Dn,d l’ensemble des graphes orientés d-réguliers à n sommets. Soit G un élément choisi uniformément
au hasard dans Dn,d et M sa matrice d’adjacente. On montre que M est inversible avec probabilité supérieure
à 1 − C ln3 d/

√
d pour C ≤ d ≤ cn/ ln2 n, où c, C sont des constantes universelles positives. Afin d’établir ce

résultat, nous montrons certaines propriétés des graphes orientés d-réguliers. Parmi celles-ci, une propriété d’anti-
concentration de type Littlewood–Offord. Soit J un sous-ensemble de sommets de G de taille |J | ≤ cn/d. Soit δi
l’indicateur de l’évènement que le sommet i est connecté à J et on note δ = (δ1, δ2, ..., δn) ∈ {0, 1}n. On montre
alors que δ n’est concentré autour d’aucun sommet du cube. Cette propriété reste vraie si une partie du graphe
est fixée.

1. Introduction. An undirected (resp., directed) graph G with n vertices is d-regular if every vertex has
exactly d neighbors (resp., d in-neighbors and d out-neighbors). In this definition we allow graphs to have
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loops and, for directed graphs, opposite (anti-parallel) edges, but no multiple edges. Thus directed graphs
(digraphs) can be viewed as bipartite graphs with both parts of size n. We denote sets of all such graphs
by Gn,d and Dn,d, respectively, and the corresponding sets of adjacency matrices by Sn,d andMn,d. Note
that Mn,d coincides with the set of n × n matrices with 0/1-entries and such that every row and every
column has exactly d ones. Clearly, Sn,d consists of symmetric matrices fromMn,d. Probability is always
given by the normalized counting measure on the corresponding set.

Spectral properties of adjacency matrices of random d-regular graphs attracted considerable attention
of researchers in the recent years. Many works were devoted to the eigenvalue distribution. At the same
time, much less is known about the singular values of the matrices.

Our work is motivated by related questions on singular probability. One conjecture was mentioned
by Vu in his survey [12, Problem 8.4] (see also 2014 ICM talks by Frieze and Vu [5, Problem 7], [13,
Conjecture 5.8]). It asserts that for 3 ≤ d ≤ n − 3 the probability that a random matrix uniformly
distributed on Sn,d is singular goes to zero as n grows to infinity. We formulate here the corresponding
question for non-symmetric adjacency matrices (cf., [3, Conjecture 1.5]):

Is it true that for every 3 ≤ d ≤ n− 3, one has

pn,d := P {M ∈Mn,d : M is singular} −→ 0 as n→∞? (∗)

Singularity of random square matrices is a subject with a long history and many results. A fundamental
role in this topic is played by what is nowadays called the Littlewood-Offord theory. In its classical form,
established by Erdös [4], the Littlewood–Offord inequality states that for every fixed z ∈ R, a vector
a = (a1, a2, . . . , an) ∈ Rn with non-zero coordinates and independent random signs rk (k ≤ n), the
probability P {

∑n
k=1 rkak = z} is bounded from above by n−1/2. This combinatorial result has been

substantially strengthened and generalized in subsequent years, leading to a much better understanding
of interrelationship between the law of the sum

∑n
k=1 rkak and the arithmetic structure of the vector a.

For more information and further references, we refer the reader to [11, Section 3] and [9, Section 4].
The use of the Littlewood-Offord theory in context of random matrices can be illustrated as follows:

given an n × n matrix A with i.i.d. elements, A is non-singular if and only if the inner product of a
normal vector to the span of any subset of n − 1 columns of A with the remaining column is non-zero.
Thus, knowing the typical arithmetic structure of the random normal vectors and conditioning on their
realization, one can estimate the probability that A is singular.

The main difficulty in singularity questions such as (∗) stems from the restrictions on row/column-
sums, and from possible symmetry constraints for the entries. Note that for a random matrix uniformly
distributed onMn,d every two entries/rows/columns are probabilistically dependent; moreover, a realiza-
tion of the first n− 1 columns uniquely defines the last column. This makes a straightforward application
of the Littlewood–Offord theory (as illustrated in the previous paragraph) impossible. Thus, an extension
of the theory covering this probabilistic model is needed.

In this note we address the question (∗) and provide a Littlewood–Offord type anti-concentration
property of random graphs. For the complete proofs see [7].

2. Main results. The question (∗) has been recently studied in [3] by Cook who obtained the bound
pn,d ≤ d−c for a small constant c > 0 and d satisfying ω(ln2 n) ≤ d ≤ n − ω(ln2 n), where f ≥ ω(an)
means f/an →∞ as n→∞. Our main result shows that one can drop the condition d ≥ ω(ln2 n).

Theorem 1 There are positive constants c, C such that for 3 ≤ d ≤ cn/ ln2 n one has pn,d ≤ C ln3 d/
√
d.

Thus we proved that pn,d → 0 as d → ∞, which in particular verifies (∗) whenever d = ω(1), without
any restrictions on the rate of convergence. We would like to notice that even in the range ω(ln2 n) ≤ d ≤
cn/ ln2 n covered in [3], our bound in Theorem 1 is better.

The following anti-concentration property plays a crucial role in our proof. Let a random matrix M
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be uniformly distributed on Mn,d. Denote its rows by Ri(M) and its columns by Xi(M), i ≤ n. Given a
subset J of [n] := {1, 2, . . . , n}, consider a random 0/1-vector δJ(M) such that its i-th coordinate δJi (M)
equals one if and only if the support of i-th row of M intersects J . In other words, δJi (M) is the indicator
of the event J ∩ suppRi(M) 6= ∅. We prove that for J whose cardinality |J | is not too close to n the
vector δJ(M) cannot concentrate around any vertex of the cube, i.e., that δJ(M) behaves similarly to
a uniformly distributed random vector on {0, 1}n (in the abstract we described this property in terms
of graphs). In a sense, this shows that 1’s are located rather uniformly across M . This property can
be seen as an anti-concentration result for random graphs, matching anti-concentration properties of a
weighted sum of independent random variables (or random vectors) studied in the Littlewood–Offord
theory. In order to combine this property with an ε-net approximation (discussed later on), we will need
to determine the action of M on a part of a given vector corresponding to “small” coordinates. To achieve
this the columns of the matrix corresponding to the remaining part of the vector should be fixed and the
anti-concentration is proved under this conditioning. Theorem 2 makes this precise.

Theorem 2 There are two positive absolute constants c and c1 such that the following holds. Let 32 ≤
d ≤ cn and I, J be disjoint subsets of [n] such that |I| ≤ d|J |/32 and 8 ≤ |J | ≤ 8cn/d. Let vectors
ai ∈ {0, 1}n, i ∈ I, be such that the event E := {Xi(M) = ai for all i ∈ I} has non-zero probability (if
I = ∅ we set E =Mn,d). Then for every v ∈ {0, 1}n one has

P{δJ(M) = v | E} ≤ 2 exp

(
−c1d|J | ln

(
n

d|J |

))
.

3. Methods of proof. In this section, we discuss the scheme and the methods of the proof. We also
explain several novel ideas allowing to drop the restriction d ≥ ω(ln2 n) and to treat very sparse matrices.

The proof is naturally split into two distinct parts. First we establish certain properties of random
d-regular directed graphs and their adjacency matrices. Then we use these results to deal with the singu-
larity. Below, considering a random matrix M , we always mean a random matrix uniformly distributed
onMn,d. Saying that it has some property means that this property holds with probability going to one.

To work with the “shuffling” procedure described below, we show that supports of any two rows of a
random matrix have small intersection. Moreover, the proof of Theorem 2 requires a stronger property:

Lemma 3 There exists an absolute constant c > 0 such that for every ε ∈ (
√

ln d/d, 1) and k ≤ cεn/d,
the union of supports of any k rows (or columns) of a random matrix on Mn,d has cardinality exceeding
(1− ε)dk with probability at least 1− exp (−cε2d ln(cεn/d)).

Properties of this type are known for random undirected graphs (see [6] and references therein). A
key ingredient in the proofs of these results is the simple switching (also called transfusion), which was
introduced for general graphs by Senior [10]. In the context of d-regular graphs it was first applied by
McKay [8]. We also use this technique to show that a random matrix has no large zero minors, namely:

Lemma 4 There are absolute positive constants c and C such that for Cn ln d/d ≤ ` ≤ r ≤ n/4 a random
matrix on Mn,d has no `× r zero minors with probability at least 1− exp (−cr`d/n).

Both properties (“no large intersections” and “no large zero minors”) illustrate a general phenomenon
that a random graph has good “regularity” properties. Analogous statements for the Erdös-Rényi graphs
(in this random model an edge between every two vertices is included/excluded in a graph independently
of other edges) follow from standard Bernstein type inequalities. For related results on d-regular random
graphs, we refer the reader to [6] where concentration properties of co-degrees were established in the
undirected setting, and to [2] for concentration of co-degrees and the “edge counts” for directed graphs.
In paper [2] which serves as a basis for the main theorem of [3], rather strong concentration properties
were established; however, the results provided in that paper are valid only for d ≥ ω(lnn). The proof
in [3] is based on the method of exchangeable pairs introduced by Stein and developed for concentration
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inequalities by Chatterjee (see survey [1] for more information and references). On the contrary, our proof
of the aforementioned statements is simpler, completely self-contained, and works for d ≥ C.

After establishing properties of random d-regular directed graphs and their adjacency matrices, we turn
to the proof of Theorem 1. We follow the scheme and expand on some of the techniques developed in [3]
adding new crucial ingredients to remove logarithmic lower bound on d. In this scheme, at the first step,
one shows that a random matrix does not have any (left or right) null vectors with many (more than
Cnd−c) equal coordinates, provided that d ≥ ω(ln2 n). At the second step, one shows that, conditioned
on this event, a random matrix is not singular.

The “no large zero-minors property,” which we apply on the second step, allows to modify this scheme
so that at first step it is enough to consider a much smaller class of almost constant vectors. We show that
for every C ≤ d ≤ cn, a random matrix does not have null vectors having n− n/ ln d equal coordinates.
This step essentially uses Theorem 2 together with a new delicate approximation argument dealing with
tails of appropriately rescaled vectors in Rn. Note that a logarithmic lower bound on d is not required.

Then, conditioning on the event that M does not have almost constant null vectors, we show that
a random matrix M is non-singular with high probability. In [3], a sophisticated approach based on
“shuffling” of two rows was developed to treat this case. The shuffling consists in a random perturbation
of two rows of a fixed matrix M ∈ Mn,d in such a way that the sum of the rows remains unchanged.
Then one uses a variant of the classical Erdös anti-concentration inequality to show that the number of
“bad” perturbations is small. To apply this we need that the supports of these two rows have a small
intersection. As shuffling involves supports of only two rows, at this step we get that probability tends to
zero with d and not with n (and this is the only such step – in all our other statements the probability
converges with n). We developed further the shuffling technique to simplify the proof and to obtain better
probability estimates.

Finally, we give more details about the completion of the proof. Using that there are no almost constant
vectors and that there are no large zero minors, we show that for singular matrices with high probability
the minor M1,2 obtained by removing the first two rows has largest possible rank, that is, either rkM1,2 =
rkM when rkM ≤ n− 2 or rkM1,2 = n− 2 when rkM = n− 1. We consider the equivalence classes of
matrices with the same minor M1,2. Noticing that fixing such a minor determines the support of the first
two rows, we use the shuffling procedure for the first two rows and show that the set of matrices of rank
≤ n− 2 (resp. = n− 1) is small inside the set of matrices of rank ≤ n− 1 (resp. = n). This implies the
bound on the probability that M is singular.
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