
Asymmetry of convex polytopes and vertex
index of symmetric convex bodies. ∗

E. D. Gluskin A. E. Litvak

Abstract
In [GL] it was shown that a polytope with few vertices is far from

being symmetric in the Banach-Mazur distance. More precisely, it
was shown that Banach-Mazur distance between such a polytope and
any symmetric convex body is large. In this note we introduce a new,
averaging-type parameter to measure the asymmetry of polytopes. It
turns out that, surprisingly, this new parameter is still very large, in
fact it satisfies the same lower bound as the Banach-Mazur distance.
In a sense it shows the following phenomenon: if a convex polytope
with small number of vertices is as close to a symmetric body as it can
be, then most of its vertices are as bad as the worst one. We apply our
results to provide a lower estimate on the vertex index of a symmetric
convex body, which was recently introduced in [BL]. Furthermore, we
give the affirmative answer to a conjecture by K. Bezdek [B3] on the
quantitative illumination problem.

1 Introduction

Let K be a convex body in Rd. How asymmetric is K? More precisely, how
far is K from being centrally symmetric? Of course, such a question requires
a functional, which measures asymmetry, or a distance between convex bod-
ies. One of the natural ways to introduce such a measure is the following
functional

dK := inf
a∈K

sup
x∈K−a

‖ − x‖K−a,
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where ‖·‖K denotes the Minkowski functional of K or the gauge of K (see the
definitions below). This functional is closely related (in fact, is equivalent to)
the Banach-Mazur distance between K and the set of all centrally symmetric
bodies in Rd. We refer to [Gr] for related discussion on this and other ways
to measure the asymmetry of a given convex body in Rd.

In the present note we deal with convex d-polytopes, i.e. with convex
polytopes whose interiors are not empty. Let K be such a polytope and
{xi}m

i=1 be its vertices. It is easy to see that dK = maxi ‖ − (xi − a)‖K−a for
some a ∈ K. Thus, the functional dK takes into account only one, the worst,
vertex of K. We suggest another, averaging-type functional to measure the
asymmetry of convex polytopes, namely we define

δK := inf
a∈K

1

m

m∑
i=1

‖ − (xi − a)‖K−a.

Thus, our functional measures how bad vertices are in average (“x is bad”
here means that ‖ − x‖K is big, which in turn means that −x is far away
from the body). Clearly, δK ≤ dK. Our main result, Theorem 3.2, states:

Let 1 ≤ k ≤ d and m = d + k. Let K be a convex d-polytope in Rd with
m vertices x1, x2, . . ., xm. Then

δK ≥ m

2k
.

It shows that a convex d-polytope cannot be centrally symmetric unless
it has at least 2d vertices and provides a quantitative lower bound. The
bound should be compared with the main result from [GL], which states
that dK ≥ d/k and which is sharp (i.e., for every d, k there exists a con-
vex d-polytope in Rd with d + k vertices such that dK ≤ dd/ke, where dae
denotes the smallest integer larger than or equal to a). Thus, in general,
the lower bound for the worst vertex is almost the same as the lower bound
for the average vertex. In other words, Theorem 3.2 discovers the following
(high-dimensional) phenomenon: if a convex polytope with small number of
vertices is as close to a symmetric body as it can be, then most of its vertices
are as bad as the worst one.

We apply our results to provide sharp lower bounds for the vertex index
of a centrally symmetric convex body K, vein(K), and for the illumination
parameter of a centrally symmetric convex body K, ill(K) (see the pre-
cise definitions in Section 4). Both quantities are closely connected to some
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important quantities and problems in asymptotic theory of normed spaces
and in convex geometry, including the problem of covering a convex body
by smaller homothetic copies of itself. In particular, the illumination pa-
rameter of a convex body was introduced in [B1] as a cost function for the
Boltyanski-Hadwiger illumination conjecture. We refer the interested reader
to [B2, B3, BL, MS] and references therein for more details.

K. Bezdek conjectured (see Problem 6.3 of [B3]) that for every centrally
symmetric d-dimensional body K one has

ill(K) ≥ 2d.

Applying our results on the asymmetry of polytopes, in Theorem 4.1 we
prove that for every d-dimensional centrally symmetric convex body K one
has

vein(K) ≥ 2d.

As ill(K) ≥ vein(K), it proves Bezdek’s conjecture.

2 Preliminaries and Notation

By | · | and 〈·, ·〉 we denote the canonical Euclidean norm and the canonical
inner product on Rd. The canonical basis of Rd we denote by e1, . . . , ed.
Given points x1, . . . , xk in Rd we denote their convex hull by conv {xi}i≤k.

Let K ⊂ Rd be a compact convex body with nonempty interior such that
0 ∈ K. We denote by K◦ the polar of K, i.e.,

K◦ = {x | 〈x, y〉 ≤ 1 for every y ∈ K} .

In particular, if 0 is on the boundary of K then K◦ is unbounded star-shaped
convex set. We will also use that if E is a linear subspace of Rd then the
polar of K ∩ E (taken in E) is

(K ∩ E)◦ = PEK◦,

where PE is the orthogonal projection onto E.
The Minkowski functional (or the gauge) of a convex body K containing

0 in its interior is defined as

‖x‖K = inf{λ > 0 | x ∈ λK}.
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Note that if K is centrally symmetric with respect to the origin then ‖·‖K is a
norm on Rd and K is its unit ball. Below it will be convenient to consider the
Minkowski functional even for unbounded closed star-shaped sets as well as
for sets containing 0 as a boundary point under usual agreement inf ∅ = ∞.
In particular, it can happen that ‖x‖K = 0 for x 6= 0 or that ‖x‖K = ∞.

Given real number a by [a] we denote the largest integer not exceeding a
and by dae we denote the smallest integer which is not smaller than a.

We also will use the following proposition, which is a combination of
Weil’s Theorem ([W], see also Theorem 2.3.1 of [GoK]) and Stinespring’s
result ([S], see also 3.7.8 in [GoK]). For the reader’s convenience we outline
the proof.

Proposition 2.1 Let T = {tij} be an m × m matrix and λ1, λ2, . . . , λm be
eigenvalues of T . Then

m∑
j=1

|λj| ≤
m∑

i,j=1

|tij|.

Proof: Recall that singular numbers of T are defined as

sj(T ) = λj

(
(T ∗T )1/2

)
,

where λj(A) denotes jth largest eigenvalue of A (counted according to mul-
tiplicities). Weil’s Theorem says that

m∑
j=1

|λj(T )| ≤
m∑

j=1

sj(T ).

It is well known that γ(T ) :=
∑m

j=1 sj(T ) is a norm (see, e.g., Theorem 3.7.1
in [GoK]). Therefore,

γ(T ) ≤
m∑

i,j=1

|tij|γ(Eij),

where Eij denotes the matrix with zero entries except one element in ith row,
jth column, which is 1. It is easy to see that γ(Eij) = 1 for every i and j,
which completes the proof. 2
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3 Asymmetry of polytopes

Lemma 3.1 Let Λ = {λij} be an m×m matrix of rank k with nonnegative
entries such that λii ≥ 1 for every i ≤ m. Then

m∑
i,j=1

λij ≥ 3m− 2k.

Moreover, if m ≥ 2k then

m∑
i,j=1

λij ≥ m +
m(m− 1)

2k − 1
.

Remark. Note that the estimates of Lemma 3.1 are asymptotically sharp.
Indeed, consider a block-diagonal matrix with k blocks [m/k] × [m/k] or
dm/ke × dm/ke of rank one, such that each block has entries 1 only. Then
we have

m∑
i,j=1

λij ≤
m2

k
+

k

4
.

Proof of Lemma 3.1. First let us note that without loss of generality
we can assume that λii = 1 for every i (otherwise we pass to the matrix
{λij/λii}ij).

Consider T = Λ− I, where I is the identity and denote its entries by tij.
Clearly, tij ≥ 0 and tii = 0 for every i, j. By λj denote the eigenvalues of T .

Since Λ is of rank k, at least m − k of eigenvalues of T are equal to −1
(indeed, T = −I on KerΛ). Since

0 =
m∑

i=1

tii = TraceT =
m∑

i=1

λi,

we obtain
m∑

i=1

|λi| ≥ 2m− 2k.

Proposition 2.1 implies
m∑

i,j=1

tij ≥ 2m− 2k,
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which shows
m∑

i,j=1

λij ≥ 3m− 2k.

For m < 2k it proves the result.
Now we assume that m ≥ 2k. Let σ ⊂ {1, 2, . . . ,m} be of cardinality l

for some 2k ≤ l ≤ m. Let
Λ̄ = {λij}i,j∈σ .

Clearly the rank of Λ̄ does not exceed k, so, by the first part, we have∑
i,j∈σ

λij ≥ 3l − 2k.

Using averaging argument, we obtain

m∑
i,j=1

λij = m +
m∑

i,j=1
i6=j

λij = m +

(
m− 2

l − 2

)−1 ∑
σ⊂{1,2,...,m}

|σ|=l

∑
i,j∈σ
i6=j

λij

≥ m +

(
m− 2

l − 2

)−1(
m

l

)
(2l − 2k) = m + 2

m(m− 1)

l(l − 1)
(l − k) .

The choice l = 2k completes the proof. 2

Theorem 3.2 Let 1 ≤ k ≤ d and m = d + k. Let K be a convex d-polytope
in Rd with m vertices x1, x2, . . ., xm. Then

m∑
i=1

‖ − xi‖K ≥ m2

2k
≥ max

{
2d,

md

2k

}
.

Remark 1. Since a shift of a convex d-polytope with m vertices is still a
convex d-polytope with m vertices, Theorem 3.2 implies immediately

δK ≥ m

2k
.

Remark 2. As was noticed in [GL], the estimate is asymptotically sharp.
Geometrically one can consider the following example. Let

Rd = ⊕k
i=1Ei,
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where Ei’s are orthogonal coordinate subspaces of Rd of dimension [d/k] or
dd/ke. In each Ei consider the regular simplex, denoting its vertices by xij,
j ≤ dimEi + 1 and set K = conv {xij}ij. Clearly,

‖ − xij‖ = dimEi.

Therefore

1

m

∑
i,j

‖ − xij‖ ≤ max
i,j

‖ − xij‖ = max
i

dimEi = dd/ke,

which means δK ≤ dK ≤ dd/ke.
Proof of Theorem 3.2. Consider the linear operator T : Rm −→ Rd defined
by Tei = xi. Denote the kernel of T by L. Clearly, L is a k-dimensional
subspace of Rm. The orthogonal projection onto L⊥ we denote by P .

Since K◦ = {f ∈ Rd | 〈f, xj〉 ≤ 1 for every j ≤ m}, we have

A :=
m∑

i=1

‖−xi‖K =
m∑

i=1

sup
{
〈f,−xi〉 | f ∈ Rd, 〈f, xj〉 ≤ 1 for every j ≤ m

}
.

Using 〈f, xi〉 = 〈f, Tei〉 = 〈T ∗f, ei〉, we obtain

A =
m∑

i=1

sup
{
〈h,−ei〉 | h ∈ Rm, h ∈ L⊥, 〈h, ej〉 ≤ 1 for every j ≤ m

}
.

Now denote

S := {h ∈ Rm | 〈h, ej〉 ≤ 1 for every j ≤ m}

and for every i ≤ m denote

Qi := {h ∈ Rm | 〈h, ei〉 ≥ −1}.

Then

S◦ = {h ∈ Rm | 0 ≤ 〈h, ej〉 for every j ≤ m, and
m∑

j=1

〈h, ej〉 ≤ 1}

and
Q◦

i = {h ∈ Rm | −1 ≤ 〈h, ei〉 ≤ 0, 〈h, ej〉 = 0 for j 6= i}.
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Therefore

‖z‖S◦ :=

{ ∑m
j=1 〈z, ej〉 if 〈z, ej〉 ≥ 0 for every j ≤ m,

∞ otherwise,

which implies

‖z‖PS◦ = inf
y∈L

‖z + y‖S◦

= inf

{
m∑

j=1

〈z + y, ej〉 | y ∈ L, 〈y, ej〉 ≥ − 〈z, ej〉 for every j ≤ m

}
.

Using duality and our notation, we observe

A =
m∑

i=1

sup
h∈S∩L⊥

〈h,−ei〉 =
m∑

i=1

sup
h∈S∩L⊥

‖h‖Qi

=
m∑

i=1

sup
h∈Q◦

i

‖h‖PS◦ =
m∑

i=1

‖ − ei‖PS◦

=
m∑

i=1

inf

{
m∑

j=1

〈y, ej〉 − 1 | y ∈ L, 〈y, ei〉 ≥ 1, 〈y, ej〉 ≥ 0 for every j ≤ m

}
.

Assume that for every i ≤ m the latter infimum attains on yi ∈ L. Denoting
yij := 〈yi, ej〉, we observe that yij ≥ 0 and yii ≥ 1 for every i ≤ m, j ≤ m,
and that the matrix {yij} has rank at most k. Since m = d+k ≥ 2k, applying
Lemma 3.1, we obtain

A =
m∑

i=1

m∑
j=1

yij −m ≥ m(m− 1)

2k − 1
≥ m2

2k
.

This completes the proof. 2

4 A lower bound on the vertex index

In this section we apply our results to provide a sharp lower estimate for
the vertex index of a centrally symmetric convex body and, in particular,
to prove a conjecture of K. Bezdek on the lower bound for the illumination
parameter of a centrally symmetric convex body.
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The vertex index of a centrally symmetric (with respect to the origin)
convex body K, introduced in [BL], is defined as

vein(K) = inf

{∑
i

‖pi‖K | K ⊂ conv {pi}i

}
.

In other words, given K = −K one looks for the convex polytope that
contains K and whose vertex set has the smallest possible closeness to 0 in
the metric generated by K.

The illumination parameter of a centrally symmetric convex body K was
introduced in [B1] as a cost function for the Boltyanski-Hadwiger illumination
conjecture in the following way

ill(K) = inf

{∑
i

‖pi‖K | {pi}i ⊂ Rd illuminates K

}
,

where “illuminates” means that for every q on the boundary of K there exists
a point pi such that the ray starting at pi and passing through q intersects
the interior of K (after the point q).

Let us note that both the vertex index and the illumination parameter,
are affine invariants of K; that is, if T : Rd → Rd is an invertible linear map
then vein(K) = vein(T (K)) and ill(K) = ill(T (K)). It is also easy to see
that vein(K) ≤ ill(K). Thus both parameters are closely related and, as we
mentioned in the introduction, they are closely connected to some important
quantities and problems in asymptotic theory of normed spaces and in convex
geometry.

In [B3] K. Bezdek conjectured (see Problem 6.3) that for every centrally
symmetric d-dimensional body K one has

ill(K) ≥ 2d.

The next theorem answers in affirmative the Bezdek’s conjecture and provides
the lower bound on the vertex index of the centrally symmetric convex bodies.

Theorem 4.1 Let K be d-dimensional centrally symmetric (with respect to
the origin) convex body. Then

ill(K) ≥ vein(K) ≥ 2d.
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Proof: As we mentioned above the left-hand side inequality is simple. We
show the right-hand side inequality.

Let K ⊂ L = conv {pi}i≤m. Without loss of generality we can assume
that ‖pi‖K ≥ 1 for every i. If m ≥ 2d then we trivially have

m∑
i=1

‖pi‖K ≥ m ≥ 2d.

Assume m < 2d. Since K = −K ⊂ L, we have ‖ − x‖L ≤ ‖x‖K for every
x ∈ Rd. Therefore, applying Theorem 3.2, we obtain

m∑
i=1

‖pi‖K ≥
m∑

i=1

‖ − pi‖L ≥ 2d,

which completes the proof. 2

Remark. Let K be a cross-polytope in Rd. Since K has 2d vertices we have
ill(K) ≤ 2d, which implies

ill(K) = vein(K) = 2d

(see [BL] for a direct proof of this equality). It shows that Theorem 4.1 is
sharp.
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