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Abstract

We establish uniform estimates for order statistics: Given a sequence of inde-
pendent identically distributed random variables ξ1, . . . , ξn and a vector of scalars
x = (x1, . . . , xn), and 1 ≤ k ≤ n, we provide estimates for E k-min1≤i≤n |xiξi| and
E k-max1≤i≤n |xiξi| in terms of the values k and the Orlicz norm ∥yx∥M of the vec-
tor yx = (1/x1, . . . , 1/xn). Here M(t) is the appropriate Orlicz function associated
with the distribution function of the random variable |ξ1|, G(t) = P ({|ξ1| ≤ t}).
For example, if ξ1 is the standard N(0, 1) Gaussian random variable, then G(t) =√

2
π

∫ t
0 e

− s2

2 ds and M(s) =
√

2
π

∫ s
0 e−

1
2t2 dt. We would like to emphasize that our

estimates do not depend on the length n of the sequence.

1 Introduction

In this paper we establish uniform estimates for order statistics. The k-th order statistic
of a statistical sample of size n is equal to its k-th smallest value, or equivalently its
(n − k + 1)-th largest value. Order statistics are among the most fundamental tools in
non-parametric statistics and inference and consequently there is extensive literature on
order statistics. We only cite [1, 2, 7] and references therein.

Order statistics are more resilient to faulty sensor reading than max, min or average
and thus they find applications when methods are needed to study configurations that
take on a ranked order. To name only a few: wireless networks, signal processing, image
processing, compressed sensing, data reconstruction, learning theory and data mining. A
small sample of works done in this area are [3, 4, 5, 6, 9, 23, 25].
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Order statistics on random sequences appear naturally in Banach space theory, in com-
putations of various random parameters associated with the geometry of convex bodies
in high dimensions, in random matrix theory (computing the distribution of eigenvalues,
and in approximation theory (see e.g. [8, 10, 11, 12, 14, 17, 24, 28, 29, 30]). This list
of course does not include the enormous quantity of published works which deal with
evaluations and applications of max and min associated with various random parame-
ters, e.g., smallest and largest eigenvalues of random matrices, as these are the extreme
values in the scale of order statistics. For the important special cases of order statistics,
the minimum and maximum value of a sample, very precise estimates were obtained in
[13, 15, 16]. The new approach started there was to give estimates of the minimum and
maximum value of the sample

(1) E min
1≤i≤n

|xiξi| and E max
1≤i≤n

|xiξi|,

in terms of Orlicz norms (see the definition below). The expressions for the bounds on
the expectations in (1) are relatively simple. For instance, it was shown in [13] that

c1∥x∥M ≤ E max
1≤i≤n

|xiξi| ≤ c2∥x∥M ,

where c1, c2 are absolute positive constants and ∥ · ∥M is an Orlicz norm depending only
on the distribution of ξ1; and in [15, 16] that

c3

(
n∑

i=1

1

|xi|

)−1

≤ E min
1≤i≤n

|xiξi| ≤ c4

(
n∑

i=1

1

|xi|

)−1

,

where c3, c4 are absolute positive constants and the distribution of ξ1 satisfies some
natural conditions. In fact, in [13] much more general case was considered (see also [20]
and [26]).

Here we study general order statistics for i.i.d. (independent identically distributed)
random variables ξ1, . . . , ξn and scalars x1, . . . , xn

(2) E k- min
1≤i≤n

|xiξi| and E k- max
1≤i≤n

|xiξi|,

where for a given sequence of real numbers a1, . . . , an we denote the k-th smallest one by
k-min1≤i≤n ai. In particular, 1-min1≤i≤n ai = min1≤i≤n ai and n-min1≤i≤n ai = max1≤i≤n ai.
In the same way we denote the k-th biggest number by k-max1≤i≤n ai. Thus, k-max1≤i≤n ai =
(n − k + 1)-min1≤i≤n ai. In fact, in the theory of order statistics the standard notation
for k-min is ak:n. In this paper such a notation could be misleading and we prefer to use
k-min.

Of course the expressions for the bounds on the expectations in (2) are much more
involved than for expectations in (1). In view of possible applications we strive to keep
them as simple as possible – at the expense of the constants involved. We show that for
1 ≤ k ≤ n/2

(3) c1 max
1≤j≤k

∥ (1/xi)
n
i=j ∥

−1
2e

k−j+1
N
≤ E k- min

1≤i≤n
|xiξi| ≤ c2 max

1≤j≤k
∥ (1/xi)

n
i=j ∥

−1
2e

k−j+1
N
,
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and for 1 ≤ k ≤ cn

c3

(
max

0≤ℓ≤ck−1
∥ (1/xi)

k+ℓ
i=1 ∥

−1
2e
ℓ+1

N
+ ∥(xk+ck, . . . , xn)∥M

)
≤ E k-max

1≤i≤n
|xiξi|(4)

≤ c4

(
max

0≤ℓ≤ck−1
∥ (1/xi)

k+ℓ
i=1 ∥

−1
2e
ℓ+1

N
+ ∥(xk+ck, . . . , xn)∥M

)
,

where ∥ · ∥N , ∥ · ∥M are Orlicz norms, corresponding to Orlicz functions N , M , which are
computed in terms of the distribution function of the random variables under consider-
ation and c, c1, c2, c3, c4 are positive constants that depend mildly on the distribution
function and on k. But - and this is the main point here - the constants do not depend on
n and on the scalars x1, . . . , xn. Moreover, the dependence on k is very mild: it is of order
of ln k (or 1/ ln k). The dependence on the distribution is essentially just normalization.
The precise statements are given in Section 3.

We would like to emphasize that we do not think that the expressions in (3) and (4)
can be simplified (at least in terms of Orlicz-type functions). In Section 3 we give an
example (Example 3.4) that supports this.

In problems where only a small number of random variables is involved, numerical
computations will give sufficient estimates for order statistics. However, in the case when
a large number of random variables is involved, numerical computations may not be
feasible. Our formulae allow easy computations also in that situation.

Finally let us mention that throughout this paper we use the following notation. For
a random variable ξ on a probability space (Ω,A,P) we denote its distribution function
by Gξ and 1−Gξ by Fξ

Gξ(t) = P ({ξ ≤ t}) and Fξ(t) = P ({ξ > t}) .

Acknowledgment. We would like to thank Hermann König, Kiel, for discussions.

2 Preliminaries. Orlicz functions and norms.

In this section we recall some facts about Orlicz functions and norms. For more details
and other properties of Orlicz spaces we refer to [21, 22, 27].

A left continuous convex function M : [0,∞) → [0,∞] is called Orlicz function, if
M(0) = 0 and if M is neither the function that is constant 0 nor the function that takes
the value 0 at 0 and is ∞ elsewhere. The corresponding Orlicz norm on Rn is defined by

(5) ∥x∥M = inf

{
ρ > 0

∣∣∣∣∣
n∑

i=1

M (|xi|/ρ) ≤ 1

}
.

Note that the expression for ∥·∥M makes also sense if the functionM is merely positive
and increasing. Although in that case the expression need not be a norm, we keep the
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same notation ∥ · ∥M . We often use formula (5) in a slightly different form, namely

1/ ∥x∥M = sup

{
ρ > 0

∣∣∣∣∣
n∑

i=1

M (ρ |xi|) ≤ 1

}
.

Clearly, M ≤ M̄ implies ∥ · ∥M ≤ ∥ · ∥M̄ . Moreover, if M is an Orlicz function and s ≥ 1,
then

(6) sM(t) ≤ M(st)

for every t ≥ 0. In particular, this implies

(7) ∥ · ∥sM ≤ s∥ · ∥M .

The dual function M∗ to an Orlicz function M is defined by

M∗(s) = sup
0≤t<∞

(t · s−M(t)).

For instance, for M(t) = 1
q
tq, q ≥ 1, the dual function is M∗(t) = 1

q∗
tq

∗
with 1

q
+ 1

q∗
= 1.

Let the function p = pM : [0,∞) → [0,∞] be given by

p(t) =


0 t = 0

M ′(t) M(t) < ∞
∞ M(t) = ∞,

where M ′ is the left hand side derivative of M . Then p is increasing and the left hand
side inverse q of the increasing function p is

q(s) = inf{t ∈ [0,∞) | p(t) > s}.

Then

M∗(s) =

∫ s

0

q(t)dt.

To a given random variable ξ we associate an Orlicz function M = Mξ in the following
way:

(8) M(s) =

∫ s

0

∫
1
t
≤|ξ|

|ξ|dPdt =
∫

1
s
≤|ξ|

(s|ξ| − 1) dP.

The equality here follows by changing the order of integration and the convexity of M
follows by the definition of convexity. We prefer to keep in mind both formulae for M .
Note that equivalently one can write

M(s) = E (s|ξ| − 1)+ ,

where, as usual, h+(x) denotes h(x) if h(x) ≥ 0 and 0 otherwise.
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We claim that the dual function M∗ = M∗
ξ is given on [0,

∫
|ξ|dP] by

(9) M∗
(∫

t≤|ξ|
|ξ|dP

)
= P(|ξ| ≥ t)

and M∗(s) = ∞ for s >
∫
|ξ|dP.

Indeed, by definition

M∗(s) = sup
0≤w

(w · s−M(w)) = sup
0≤w

(
w · s−

∫ w

0

∫
1
u
≤|ξ|

|ξ|dPdu

)

= sup
0≤w

∫ w

0

(
s−

∫
1
u
≤|ξ|

|ξ|dP

)
du.

If s >
∫
|ξ|dP then the supremum is equal to ∞. Now fix t ≥ 0, set

s =

∫
t≤|ξ|

|ξ|dP

and consider the function

ϕ(w) :=

∫ w

0

(
s−

∫
1
u
≤|ξ|

|ξ|dP

)
du.

It is easy to see that ϕ is increasing on [0, 1/t] and decreasing on [1/t,∞). Therefore,

M∗(s) = sup
0≤w

ϕ(w) = ϕ(1/t) =

∫ 1/t

0

∫
t≤|ξ|<1/u

|ξ| dP du.

Changing the order of integration we obtain

M∗(s) =

∫
t≤|ξ|

∫ 1/|ξ|

0

|ξ| du dP =

∫
t≤|ξ|

dP = P(|ξ| ≥ t),

which proves (9). 2

In the Gaussian case we have

F (t) = P ({|ξ| > t}) =
√

2
π

∫ ∞

t

e−
s2

2 ds

and thus

(10) M(s) =
√

2
π

∫ s

0

∫ ∞

1
t

ue−
u2

2 dudt =
√

2
π

∫ s

0

e−
1

2t2 dt.

This implies that on the interval [0,
√
2/π] M∗ is given by

M∗(s) =

∫ s

0

1√
2 ln

(√
2
π
1
u

)du.
For s >

√
2/π, M∗(s) = ∞.
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3 The main results

Now we consider certain functions associated with a random variable ξ : Ω → R.
The function F : [0,∞) → [0,∞) is given by

(11) F (t) = P(|ξ| > t).

We assume that F is strictly decreasing on [0,∞) and F (0) = 1. In particular, F is
invertible.

The function N : [0,∞) → [0,∞) is defined by

(12) N(t) = ln
1

F (t)

and is assumed to be convex. In particular, N is an Orlicz function. For such a function
N and k ∈ N we put

(13) Nj =
2e

k − j + 1
N, j = 1, . . . , k.

Furthermore, let us observe that under assumptions above for all t ≥ 0 and all s ≥ 1
we have

(14) F (st) ≤ F (t)s.

Indeed, by (6) we have sN(t) ≤ N(st), i.e. −s lnF (t) ≤ − lnF (st), which is equivalent
to (14).

The following theorem generalizes results from [15, 16], where similar estimates were
obtained for Gaussian distributions. Of course, the Gaussian case is simpler and the
corresponding formulae are less involved. We discuss the details in Remark 3.2 following
the theorem.

Theorem 3.1 Let 1 ≤ k ≤ n
2
and let ξ1, . . . , ξn be i.i.d. copies of a random variable

ξ. Let F , N and Nj, j = 1, . . . , k, be as specified in (11), (12) and (13). Then for all
0 < x1 ≤ x2 ≤ . . . ≤ xn

c1 max
1≤j≤k

∥ (1/xi)
n
i=j ∥

−1
Nj

≤ E k- min
1≤i≤n

|xiξi| ≤ 16e2 CN ln(k + 1) max
1≤j≤k

∥ (1/xi)
n
i=j ∥

−1
Nj
,

where c1 = 1− 1√
2π

and CN = max{N(1), 1/N(1)}.
Moreover, the lower estimate does not require the condition “N is an Orlicz function”.

Remark 3.2 (The Gaussian case.) In [15, 16] it was shown that for N(0, 1) random
variables gi, i = 1, . . . , n and for all 0 < x1 ≤ x2 ≤ . . . ≤ xn

c0 max
1≤j≤k

k + 1− j∑n
i=j 1/xi

≤ E k- min
1≤i≤n

|xigi| ≤ 2
√
2π ln(k + 1) max

1≤j≤k

k + 1− j∑n
i=j 1/xi

.(15)
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where c0 =
(
1− 1√

2π

)
1
2e

√
π
2
. It is well known (and can be directly computed) that the

Gaussian distribution satisfies the conditions of Theorem 3.1. Thus the estimate (15) can
be obtained from Theorem 3.1 (with different absolute constants). In Proposition 3.7 at
the end of this section we show that in the Gaussian case N ∼ H, where

H(t) =

{
t for 0 ≤ t < 1
t2 for t ≥ 1.

Remark 3.3 It does not seem possible to get simpler expressions (related to Orlicz
functions) that would eliminate the dependence of the constants on k in the estimates of
Theorem 3.1. In particular we tried the approach from [19], which seems to be related,
but it does not work. An indication for that is the following crucial example that rules
out many natural candidates for simpler expressions.

Example 3.4 Let ξ1, . . . , ξn be independent N(0, 1)-random variables and 0 ≤ x1 ≤
. . . ≤ xn. If x1, . . . , xk are significantly smaller than xk+1, . . . , xn then

E k- min
1≤i≤n

|xiξi| ∼ E max
1≤i≤k

|xiξi| ∼ ∥(xi)
k
i=1∥M ,

where M is given in Lemma 5.2.

Our second theorem provides bounds for expectations of k-max. As in Theorem 3.1
we assume that F is strictly decreasing, F (0) = 1, and that N = − lnF is a convex
function, where F is given by (11). Note that such a function F satisfies

(16)

∫
t≤|ξ1|

|ξ1|dP ≤
(
1 +

1

N(t)

)
t · F (t)

for all positive t. We verify this. Since F = e−N and N is convex∫
t≤|ξ1|

|ξ1|dP = t · F (t) +

∫ ∞

t

F (s)ds = t · F (t) +

∫ ∞

t

e−N(s)ds.

Using (6), we have N(s) ≥ s
t
N(t) for s ≥ t. Therefore∫

t≤|ξ1|
|ξ1|dP ≤ t · F (t) +

∫ ∞

t

e−
s
t
N(t)ds

≤ t · F (t) +
t

N(t)
e−N(t) = t · F (t) +

t

N(t)
F (t),

which implies (16).
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Theorem 3.5 Let ξ1, . . . , ξn be i.i.d. copies of a random variable ξ. Let F , M , and N

be as specified in (11), (8), and (12). Let 1 < k ≤ n and k0 =
[
4(k−1)
F (1)

]
. Assume that

k + k0 ≤ n. Then for all x1 ≥ x2 ≥ . . . ≥ xn > 0

1

4

(
max

0≤ℓ≤k0−1
∥ (1/xi)

k+ℓ
i=1 ∥

−1
2e
ℓ+1

N
+

(
1 +

ln(8(k − 1))

N(1)

)−1

∥(xk+k0 , . . . , xn)∥M

)

≤ E k-max
1≤i≤n

|xiξi| ≤ c

(
CN ln(k + 1) max

0≤ℓ≤k0−1
∥ (1/xi)

k+ℓ
i=1 ∥

−1
2e
ℓ+1

N
+ ∥(xk+k0 , . . . , xn)∥M

)
,

where CN = max{N(1), 1/N(1)}, and c is an absolute positive constant.

Remark 3.6 The case k = 1 was obtained in [13] (see also Lemma 5.2 below): Let

M(s) =

∫ s

0

∫
1
t
≤|ξ1|

|ξ1|dPdt =
∫

1
s
≤|ξ|

(s|ξ| − 1) dP.

Then, for all x ∈ Rn one has

c1∥x∥M ≤
∫
Ω

max
1≤i≤n

|xiξi(ω)|dP(ω) ≤ c2∥x∥M ,

In particular, formula (10) shows that in the Gaussian case one has

M(s) =
√

2
π

∫ s

0

e−
1

2t2 dt.

We conclude this section with the following proposition, which shows that in the
Gaussian case the function N (and hence the functions Nj) is easily computable.

Proposition 3.7 Let N = − lnF , where

F (t) =
√

2
π

∫ ∞

t

e−
s2

2 ds,

and

H(t) =

{
t for 0 ≤ t < 1
t2 for t ≥ 1.

Then H is an Orlicz function and for every t ≥ 0

(2πe)−1/2 H(t) ≤ N(t) ≤ 4.5 H(t).

In particular, if k ≤ n and Nj, j ≤ k, as in (13) then for every t ≥ 0√
2e

π

1

k − j + 1
H(t) ≤ Nj(t) =

2e

k − j + 1
N(t) ≤ 9e

k − j + 1
H(t).
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Proof. Clearly, H is an Orlicz function.
For every 0 ≤ t ≤

√
π/8 we have

1

2
≤ 1−

√
2
π
t ≤ F (t) = 1−

√
2
π

∫ t

0

e−
s2

2 ds ≤ 1−
√

2
eπ

t.

Since (x− 1)/2 ≤ ln x ≤ x− 1 on [1, 2], we observe for 0 ≤ t ≤
√

π/8

N(t) = ln
1

F (t)
≤ 1

F (t)
− 1 ≤ 1

1−
√

2
π
t
− 1 ≤

√
2
π
t

1−
√

2
π
t
≤
√

8
π
t

and

N(t) = ln
1

F (t)
≥ 1

2

(
1

F (t)
− 1

)
≥ 1

2

 1

1−
√

2
eπ

t
− 1

 ≥ t√
2eπ

.

This shows the desired result for 0 ≤ t ≤
√

π/8.
Consider now the function f(t) = N(t)− t2/2 and observe that f(0) = 0. Since

F (t) ≤
√

2
π

∫ ∞

t

s

t
e−

s2

2 ds =
√

2
π

1

t
exp

(
−t2

2

)
,

we obtain that f ′(t) ≥ 0 for t ≥ 0. Thus, for every t ≥ 0 one has N(t) ≥ t2/2.
Finally, note that for every t > 0 and every A > 0

F (t) ≥
√

2
π

∫ t+A

t

e−
s2

2 ds ≥
√

2
π
A exp

(
− (t+ A)2 /2

)
.

Applying this with A =
√

π/2 and t ≥
√
π/8 (then t+ A ≤ 3t) we get that

F (t) ≥ exp
(
−9t2/2

)
.

This implies t2/2 ≤ N(t) ≤ 9t2/2 for t ≥
√
π/8. In particular, H/

√
2πe ≤ N ≤ 9H/2.

2

4 k-min (Proof of Theorem 3.1)

In this section we prove Theorem 3.1. For reader convenience we split the proof into 2
subsections. Although for Theorem 3.1 we need only p = 1 in the some statements below,
we prefer to formulate them in full generality for possible future applications.
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4.1 The lower bound in Theorem 3.1

The lower bound in Theorem 3.1 follows immediately from Proposition 4.4 below. To
prove this Proposition we need the following two simple lemmas. Similar lemmas were
used in [15, 16] (Lemmas 4 and 5 in [15] and Lemmas 8 and 9 in [16]). We omit the
proofs.

Lemma 4.1 Let 0 < x1 ≤ x2 ≤ ... ≤ xn. Let ξ1, . . . , ξn be identically distributed random
variables. Let F (t) = P{|ξ1| > t} and G(t) = 1− F (t). Then

P
{
min
1≤i≤n

|xiξi| ≤ t

}
≤

n∑
i=1

G (t/xi) .

Moreover, if the ξi’s are independent then for every t > 0

P
{
min
1≤i≤n

|xiξi| > t

}
=

n∏
i=1

F (t/xi) .

Lemma 4.2 Let 1 ≤ k ≤ n. Let 0 < x1 ≤ x2 ≤ ... ≤ xn and ξ1, . . . , ξn be i.i.d. random
variables. Let G(t) = P{|ξ1| ≤ t} and

a = a(t) =
e

k

n∑
i=1

G (t/xi) .

Assume that t is such that 0 < a < 1. Then

(17) P
{
k- min

1≤i≤n
|xiξi| ≤ t

}
≤ 1√

2πk

ak

1− a
.

Remark 4.3 Note that if G is continuous and G(s) = 0 if and only if s = 0 then the
condition on t in Lemma 4.2 above corresponds to the condition

0 < t < ∥(1/xi)
n
i=1∥−1

H ,

where H = e
k
G.

Proposition 4.4 Let p > 0, 1 ≤ k ≤ n, and 0 < x1 ≤ x2 ≤ ... ≤ xn. Let ξ1, . . . , ξn
be i.i.d. random variables, F (t) = P ({|ξ1| > t}), N(t) = ln 1

F (t)
, and Nj = 2e

k−j+1
N ,

j = 1, . . . , k. Then(
1− 1√

2π

)
max
1≤j≤k

∥ (1/xi)
n
i=j ∥

−p
Nj

≤ E k- min
1≤i≤n

|xiξi|p.
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Proof. Let c =
(
1− 1√

2π

)1/p
. It is enough to show that for every k ≤ n

(18) c ∥ (1/xi)
n
i=1 ∥

−1
N1

≤
(
E k- min

1≤i≤n
|xiξi|p

)1/p

.

Indeed, assume that (18) is true. Fix j ≤ k. Since

E k- min
1≤i≤n

|xiξi|p ≥ E (k − j + 1)- min
j≤i≤n

|xiξi|p,

(18) implies (
E k- min

1≤i≤n
|xiξi|p

)1/p

≥ c ∥ (1/xi)
n
i=j ∥

−1
Nj
,

for all 1 ≤ j ≤ k.
Now we show estimate (18). Fix ε > 0 small enough and put

A = ∥ (1/xi)
n
i=1 ∥

−1
N1

− ε.

We use that 1− t ≤ − ln t for t > 0 and that N1 =
2e
k
N = 2e

k
ln 1

F
and we obtain

a := e
k

n∑
i=1

G(A/xi) =
e
k

n∑
i=1

(1− F (A/xi))

≤ e
k

n∑
i=1

ln
1

F (A/xi)
=

1

2

n∑
i=1

N1(A/xi) ≤ 1/2.

Applying Lemma 4.2, we get

P
{
k- min

1≤i≤n
|xiξi|p ≥ Ap

}
≥ 1− 1√

2πk

ak

1− a
≥ 1− 1√

2π
,

as a ≤ 1/2. This implies

E k- min
1≤i≤n

|xiξi|p ≥ Ap P
{
k- min

1≤i≤n
|xiξi|p ≥ Ap

}
≥
(
1− 1√

2π

)
Ap.

Sending ε to 0 we obtain the desired result. 2

4.2 The upper bound in Theorem 3.1

Here we prove the upper bound in Theorem 3.1, which will follow from Proposition 4.9
below. We start with a combinatorial lemma, partial case of which was proved in [16]
(Lemma 4 there). Since Lemma 4.5 is of independent interest and is much more involved
technically than Lemma 4 in [16], we provide the complete proof.
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Lemma 4.5 Let H : R → R be an Orlicz function. For every k with 1 ≤ k ≤ n and
every z1 ≥ z2 ≥ . . . ≥ zn > 0 there is a partition of nonempty sets A1, . . . , Ak of the set
{1, . . . , n} such that

(19) min
1≤j≤k

∥∥∥(zi)ni=j

∥∥∥
H

k−j+1

≤ 4max{H(1), 1/H(1)} min
1≤j≤k

∥∥∥(zi)i∈Aj

∥∥∥
H
.

We want to emphasize that it is important that the partition consists of exactly
k sets. Our proof shows that the partition can be taken as intervals, that is Aj =
{nj + 1, . . . , nj+1} for an increasing sequence 0 = n0 < n1 < . . . < nk = n.

Proof. We may assume that H(1) = 1. Indeed, as H is convex and as H(0) = 0,
H(s) ≤ s

t
H(t) for all 0 < s < t. Thus if H(1) ≤ 1, then

H(1)∥y∥ H
H(1)

≤ ∥y∥H ≤ ∥y∥ H
H(1)

for every y ∈ Rn. Similarly, if H(1) > 1

∥y∥ H
H(1)

≤ ∥y∥H ≤ H(1)∥y∥ H
H(1)

.

We consider three cases.

Case 1:

(20) z1 ≤
1

4
∥(zi)ni=1∥H

k
.

Note that H(1) = 1 implies t = ∥(t, 0, . . . , 0)∥H for every t > 0, in particular z1 =
∥(z1, 0, . . . , 0)∥H . We put n0 = 0 and after having chosen n0, . . . , nℓ < n we define
nℓ+1 ≤ n to be the largest integer such that

(21)
∥∥(zi)nℓ+1

i=nℓ+1

∥∥
H
≤ 1

2
∥(zi)ni=1∥H

k
.

We define
Bℓ = {nℓ−1 + 1, . . . , nℓ}, ℓ = 1, . . . , L.

These sets are basically the partition we are looking for, except for a slight change that
is necessary in order to get exactly k sets.

We verify first that such a partition exists. For this we have to show that each Bℓ

contains at least one element, i.e. Bℓ ̸= ∅. In other words, we show that 0 = n0 < n1 <
. . . < nL = n. Indeed, if nl−1 < n, then nℓ−1 + 1 ∈ Bℓ because

1

4
∥(zi)ni=1∥H

k
≥ z1 ≥ znℓ−1+1 =

∥∥(0, . . . , 0, znℓ−1+1, 0, . . . , 0
)∥∥

H
.

In the last equality we used again that H(1) = 1. Thus Bℓ ̸= ∅ and nL = n which means
that the partition is well defined.

12



We show now that L > k. By (21) for every ε ∈ (0, 1) and for ℓ = 0, . . . , L − 1 we
have

nℓ+1∑
i=nℓ+1

H
(
(2− ε) ∥(zi)ni=1∥

−1
H
k
zi

)
≤ 1,

which implies
n∑

i=1

H
(
(2− ε) ∥(zi)ni=1∥

−1
H
k
zi

)
≤ L.

Therefore

∥(zi)ni=1∥H
L
≤ 1

2
∥(zi)ni=1∥H

k
.

This implies L > k and below we use that the inequality is strict.
We claim that for all ℓ = 1, . . . , k one has

(22)
∥∥(zi)i∈Bℓ

∥∥
H
≥ 1

4
∥(zi)ni=1∥H

k
.

Suppose that there is ℓ with 1 ≤ ℓ ≤ k such that

(23)
∥∥(zi)i∈Bℓ

∥∥
H
<

1

4
∥(zi)ni=1∥H

k
.

Since L > k ≥ ℓ we have nℓ + 1 ≤ n. As ∥ · ∥H is a norm and since H(1) = 1,∥∥∥(zi)nℓ+1
i=nℓ−1+1

∥∥∥
H
≤
∥∥(zi)i∈Bℓ

∥∥
H
+ ∥(0, . . . , 0, znℓ+1)∥H =

∥∥(zi)i∈Bℓ

∥∥
H
+ znℓ+1.

By (20) and (23) ∥∥∥(zi)nℓ+1
i=nℓ−1+1

∥∥∥
H
<

1

2
∥(zi)ni=1∥H

k
.

This contradicts the definition of nℓ.
Now we define the partition A1, . . . , Ak. We put Aℓ = Bℓ for 1 ≤ ℓ ≤ k − 1 and

Ak =
L∪

ℓ=k

Bℓ.

Then, by (22),

min
1≤j≤k

∥∥∥(zi)ni=j

∥∥∥
H

k−j+1

≤ ∥(zi)ni=1∥H
k

≤ 4 min
1≤ℓ≤k

∥∥(zi)i∈Bℓ

∥∥
H
≤ 4 min

1≤ℓ≤k

∥∥(zi)i∈Aℓ

∥∥
H
,(24)

which proves (19).

Case 2:

z1 >
1

4
∥(zi)ni=1∥H

k
and for all j ≤ k one has zj >

1

4

∥∥∥(zi)ni=j

∥∥∥
H

k+1−j

.

13



We choose Aj = {j} for j = 1, . . . , k − 1 and Ak = {k, . . . , n}. Then for every j ≤ k∥∥∥(zi)i∈Aj

∥∥∥
H
≥ zj >

1

4

∥∥∥(zi)ni=j

∥∥∥
H

k+1−j

,

which proves (19).

Case 3:

z1 >
1

4
∥(zi)ni=1∥H

k
and there exists j ≤ k such that zj ≤

1

4

∥∥∥(zi)ni=j

∥∥∥
H

k+1−j

.

Let m be the smallest integer such that m > 1 and

(25) zm ≤ 1

4
∥(zi)ni=m∥ H

k+1−m
.

For 1 ≤ ℓ < m we choose Aℓ = {ℓ}. Then∥∥(zi)i∈Aℓ

∥∥
H
= zℓ >

1

4
∥(zi)ni=ℓ∥ H

k+1−ℓ

and therefore
min

1≤j<m

∥∥∥(zi)ni=j

∥∥∥
H

k−j+1

≤ 4 min
1≤j<m

∥∥∥(zi)i∈Aj

∥∥∥
H
.

Now we consider the sequence zm ≥ zm+1 ≥ . . . ≥ zn > 0 and proceed as in Case 1.
The assumption of Case 1 is fulfilled by (25). The procedure of Case 1 gives a partition
Am, . . . , Ak of {m, . . . , n} satisfying (24)

4 min
m≤ℓ≤k

∥∥(zi)i∈Aℓ

∥∥
H
≥ ∥(zi)ni=m∥ H

k+1−m
.

This completes the proof. 2

We will also use the following lemma.

Lemma 4.6 Let p > 0 and 0 < x1 ≤ x2 ≤ ... ≤ xn be real numbers. Let ξ1, . . . , ξn be
i.i.d. random variables. Let F (t) = P(|ξ1| > t) be strictly decreasing and N = − lnF be
an Orlicz function. Then(

1− 1√
2π

)∥∥∥∥( 1

xi

)n

i=1

∥∥∥∥−p

2eN

≤ E min
1≤i≤n

|xiξi|p ≤ (1 + Γ(1 + p))

∥∥∥∥( 1

xi

)n

i=1

∥∥∥∥−p

N

.

Remark 4.7 If N is an Orlicz function then by (7)

(2e)−p∥ · ∥−p
N ≤ ∥ · ∥−p

2eN .

Remark 4.8 The left hand side inequality does not require the condition “N is an Orlicz
function.”
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Proof of Lemma 4.6. The left hand inequality follows from Proposition 4.4.
To prove the right hand side inequality we choose

t0 =

∥∥∥∥( 1

xi

)n

i=1

∥∥∥∥−p

N

.

Then for all t ≥ t0
n∑

i=1

ln
(
1/F

(
t1/p/xi

))
≥ 1.

By (14) for all t ≥ t0 and all xi

(t/t0)
1
p ln

1

F (t
1
p

0 /xi)
≤ ln

1

F (t
1
p/xi)

.

By Lemma 4.1,

P
{
min
1≤i≤n

|xiξi|p > t

}
=

n∏
i=1

F
(
t
1
p/xi

)
= exp

−
n∑

i=1

ln
1

F
(
t
1
p/xi

)
 ,

and thus for all t ≥ t0

P
{
min
1≤i≤n

|xiξi|p > t

}
≤ exp

−(t/t0)
1
p

n∑
i=1

ln
1

F

(
t
1
p

0 /xi

)
 ≤ exp

(
−
(

t

t0

) 1
p

)
.

Therefore

E min
1≤i≤n

|xiξi|p =

∫ ∞

0

P
{
min
1≤i≤n

|xiξi| > t
1
p

}
dt

=

∫ t0

0

P
{
min
1≤i≤n

|xiξi| > t
1
p

}
dt+

∫ ∞

t0

P
{
min
1≤i≤n

|xiξi| > t
1
p

}
dt

≤ t0 +

∫ ∞

t0

exp

(
−
(

t

t0

) 1
p

)
dt.

We substitute t = t0s
p, then

E min
1≤i≤n

|xiξi|p ≤ t0 + t0p

∫ ∞

1

sp−1e−sds ≤ t0 (1 + pΓ(p)) ,

which completes the proof. 2

Since by (7)
∥ · ∥Nj

≤ 2e∥ · ∥ N
k−j+1

,

the following Proposition implies the upper estimate in Theorem 3.1.
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Proposition 4.9 Let 1 ≤ k ≤ n and 0 < x1 ≤ x2 ≤ ... ≤ xn. Let ξ1, . . . , ξn be i.i.d.
random variables. Let F (t) = P(|ξ1| > t) be strictly decreasing, and let N = − lnF be an
Orlicz function. Then

E k- min
1≤i≤n

|xiξi| ≤ 8e ln(k + 1) CN max
1≤j≤k

∥∥∥∥∥
(

1

xi

)n

i=j

∥∥∥∥∥
−1

N
k−j+1

where CN = max{N(1), 1/N(1)}.

Proof. The case k = 1 follows form Lemma 4.6. We assume k ≥ 2.
Let A1, . . . Ak be the partition of {1 . . . n} given by Lemma 4.5. Then for all q ≥ 1

E k- min
1≤i≤n

|xiξi| ≤ E max
1≤j≤k

min
i∈Aj

|xiξi| ≤ E

(
k∑

j=1

∣∣∣∣min
i∈Aj

|xiξi|
∣∣∣∣q
) 1

q

≤

(
E

k∑
j=1

∣∣∣∣min
i∈Aj

|xiξi|
∣∣∣∣q
) 1

q

=

(
k∑

j=1

E
∣∣∣∣min
i∈Aj

|xiξi|
∣∣∣∣q
) 1

q

.

By Lemma 4.6 the latter expression is less than

(1 + Γ(1 + q))
1
q

(
k∑

j=1

∥∥∥∥∥
(

1

xi

)
i∈Aj

∥∥∥∥∥
−q

N

) 1
q

≤ 2qk1/q max
1≤j≤k

∥∥∥∥∥
(

1

xi

)
i∈Aj

∥∥∥∥∥
−1

N

.

The choice q = ln(k + 1) gives

E k- min
1≤i≤n

|xiξi| ≤ 2e ln(k + 1) max
1≤j≤k

∥∥∥∥∥
(

1

xi

)
i∈Aj

∥∥∥∥∥
−1

N

.

By Lemma 4.5 applied with zi = xi, i ≤ n, this expression is smaller than

8e CN max
1≤j≤k

∥∥∥∥∥
(

1

xi

)n

i=j

∥∥∥∥∥
−1

Nj

.

2

5 k-max (Proof of Theorem 3.5)

In this section we prove Theorem 3.5. As in the previous section we separate proofs of
upper and lower bounds. We start with the upper bound.
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5.1 The upper bound in Theorem 3.5

Here we prove the upper bound in Theorem 3.1. It will follow from Lemma 5.4 (see
Remark 5.5 following the lemma).

We require a result from [13]. Let f be a random variable with continuous distribution
and such that E|f | < ∞. Let tn = tn(f) = 0, t0 = t0(f) = ∞, and for j = 1, . . . , n− 1

(26) tj = tj(f) = sup
{
t | P{ω| |f(ω)| > t} ≥ j

n

}
.

Since f has the continuous distribution, we have for every j ≥ 1

P{ω| |f(ω)| ≥ tj} = j
n
.

For j = 1, . . . , n define the sets

(27) Ωj = Ωj(f) = {ω| tj ≤ |f(ω)| < tj−1}.

For all j = 1, . . . , n we have

Ωj = {ω| tj ≤ |f(ω)| < tj−1} = {ω| tj ≤ |f(ω)|} \ {ω| tj−1 ≤ |f(ω)|}.

Therefore
P(Ωj) =

j
n
− j−1

n
= 1

n
.

For j = 1, . . . , n let

(28) yj = yj(f) :=

∫
Ωj

|f(ω)|dP(ω).

Then
n∑

j=1

yj = E|f | and tj ≤ nyj < tj−1 for all j = 1, . . . , n.

In [13], Corollary 2 we proved the following statement.

Lemma 5.1 Let f1, . . . , fn be i.i.d. random variables such that
∫
|fi(ω)|dP(ω) = 1. Let

M be an Orlicz function such that for all k = 1, . . . , n

M∗

(
k∑

j=1

yj

)
= k

n
.

Then, for all x ∈ Rn

c1∥x∥M ≤
∫
Ω

max
1≤i≤n

|xifi(ω)|dP(ω) ≤ c2∥x∥M ,

where c1 and c2 are absolute positive constants.
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This can be reformulated in the following way.

Lemma 5.2 Let ξ1, . . . , ξn be i.i.d. random variables such that
∫
|ξi(ω)|dP(ω) = 1. Let

M be the Orlicz function such that for all s ≥ 0

M(s) =

∫ s

0

∫
1
t
≤|ξ1|

|ξ1|dPdt =
∫

1
s
≤|ξ|

(s|ξ| − 1) dP.

Then, for all x ∈ Rn

c1∥x∥M ≤
∫
Ω

max
1≤i≤n

|xiξi(ω)|dP(ω) ≤ c2∥x∥M ,

where c1 and c2 are absolute positive constants.

Proof. By definition
k∑

i=1

yi =

∫
tk≤ξ1

|ξ1(ω)| dP(ω)

and

P ({ω | tk ≤ ξ1(ω)}) =
k

n
.

Therefore the Orlicz function M∗ defined by

M∗
(∫

t≤|ξ1|
|ξ1(ω)|dP(ω)

)
= P{ω|t ≤ |ξ1(ω)|}

satisfies the condition of Lemma 5.1. It is left to observe that the dual function to M∗ is

M(s) =

∫ s

0

∫
1
t
≤|ξ1|

|ξ1|dPdt.

This has been verified in Section 2 (see formulae (8) and (9)). 2

For the next lemma we need the following simple claim.

Claim 5.3 Let (xi)
n
i=1 be a sequence. Then for every j ≤ n− k one has

k- max
1≤i≤n

|xi| ≤ j- min
1≤i≤k+j−1

|xi|+ max
k+j≤i≤n

|xi|.

Proof. If the numbers |x1|, . . . , |xk+j−1| contain the k biggest of the numbers |x1|, . . . , |xn|,
then

j- min
1≤i≤k+j−1

|xi| = k- max
1≤i≤k+j−1

|xi| = k- max
1≤i≤n

|xi|.

On the other hand, if the numbers |x1|, . . . , |xk+j−1| do not contain the k biggest of the
numbers |x1|, . . . , |xn|, then at least one of those is contained in the numbers |xk+j|, . . . , |xn|
and therefore

max
k+j≤i≤n

|xi| ≥ k- max
1≤i≤n

|xi|.

2
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Lemma 5.4 Let x1 ≥ x2 ≥ . . . ≥ xn > 0. Let ξ1, . . . , ξn be i.i.d. random variables and
F (t) = P ({|ξ1| > t}). Suppose that F is strictly decreasing and N = − lnF is an Orlicz
function. Assume that M is the Orlicz function such that for all s ≥ 0

M(s) =

∫ s

0

∫
1
t
≤|ξ|

|ξ|dPdt.

Then we have

E k- max
1≤i≤n

|xiξi| ≤ c min
1≤j≤n−k

{
CN ln(k+1) max

0≤ℓ≤j−1
∥ (1/xi)

k+ℓ
i=1 ∥

−1
2e
ℓ+1

N
+∥(xk+j, . . . , xn)∥M

}
,

where c is an absolute constant and CN = max{N(1), 1/N(1)}.

Remark 5.5 Note that Lemma 5.4 applied with j = k0 =
[
4(k−1)
F (1)

]
implies the upper

bound in Theorem 3.5.

Proof of Lemma 5.4. Claim 5.3 implies

E k- max
1≤i≤n

|xiξi| ≤ min
1≤j≤n−k

(
E j- min

1≤i≤k+j−1
|xiξi|+ E max

k+j≤i≤n
|xiξi|

)
.

Applying Theorem 3.1 to the sequence xk+j−1 ≤ xk+j−2 ≤ . . . ≤ x1, we observe that

E j- min
1≤i≤k+j−1

|xiξi| ≤ 16e2CN ln(k + 1) max
1≤ℓ≤j

∥ (1/xi)
k+j−ℓ
i=1 ∥−1

2e
j−ℓ+1

N
.

This is the same as

E j- min
1≤i≤k+j−1

|xiξi| ≤ 16e2CN ln(k + 1) max
0≤ℓ≤j−1

∥ (1/xi)
k+ℓ
i=1 ∥

−1
2e
ℓ+1

N
.

On the other hand, Lemma 5.2 implies

E max
k+j≤i≤n

|xiξi| ≤ c ∥(xk+j, . . . , xn)∥M ,

where c is an absolute constant. This completes the proof. 2

5.2 The lower bound in Theorem 3.5

The proof of the lower bound in Theorem 3.5 consists of two lemmas.

Lemma 5.6 Let x1 ≥ x2 ≥ . . . ≥ xn > 0. Let ξ1, . . . , ξn be i.i.d. random variables and
F (t) = P(|ξ1| > t). For k > 1 let

NF,k(t) =
F (1/t)

4(k − 1)
.

19



Then

E k- max
1≤i≤n

|xiξi| ≥ max

{
1

2
∥(xk, . . . , xn)∥NF,k

, max
1≤ℓ≤n−k

E ℓ- min
1≤i≤k+ℓ−1

|xiξi|
}
.

In particular, if N(t) = ln 1
F (t)

, then

E k- max
1≤i≤n

|xiξi| ≥ max

{
1

2
∥(xk, . . . , xn)∥NF,k

, (1− 1√
2π
) max
1≤ℓ≤n−k

max
1≤j≤ℓ

∥ (1/xi)
k+ℓ−j
i=1 ∥−1

2e
ℓ−j+1

N

}
.

Proof. First we show

E k- max
1≤i≤n

|xiξi| ≥
1

2
∥(xk, . . . , xn)∥NF,k

.

We have

P
{
ω

∣∣∣∣ k- max
1≤i≤n

|xiξi(ω)| ≤ t

}
≤

k−1∑
j=0

∑
A⊂{1,...n}

|A|=j

∏
i∈A

F

(
t

xi

)∏
i ̸∈A

(
1− F

(
t

xi

))
.

Since x1 ≥ x2 ≥ . . . ≥ xn > 0 and |Ac| ≥ n− k + 1, we observe

P
{
ω

∣∣∣∣ k- max
1≤i≤n

|xiξi(ω)| ≤ t

}
≤

k−1∑
j=0

∑
|A|=j

∏
i∈A

F

(
t

xi

) n∏
i=k

(
1− F

(
t

xi

))
.

Now we apply the Hardy-Littlewood-Polya inequality ([18]), which states that for non-
negative numbers a1, . . . , am one has

∑
A⊂{1,...m}

|A|=j

∏
i∈A

ai ≤
(
m

j

)(
1

m

m∑
i=1

ai

)j

≤ 1

j!

(
m∑
i=1

ai

)j

.

This implies

P
{
ω

∣∣∣∣ k- max
1≤i≤n

|xiξi(ω)| ≤ t

}
≤

k−1∑
j=0

1

j!

(
n∑

i=1

F

(
t

xi

))j n∏
i=k

(
1− F

(
t

xi

))
.

Since F
(

t
xi

)
≤ 1 and 1− x ≤ e−x for x ≥ 0, one has

P
{
ω

∣∣∣∣ k- max
1≤i≤n

|xiξi(ω)| ≤ t

}
≤

k−1∑
j=0

1

j!

(
k − 1 +

n∑
i=k

F

(
t

xi

))j

exp

(
−

n∑
i=k

F

(
t

xi

))
.

Let

α = α(t) =
1

k − 1

n∑
i=k

F

(
t

xi

)
.
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Then

P
{
ω

∣∣∣∣ k- max
1≤i≤n

|xiξi(ω)| ≤ t

}
≤ e−α(k−1)

k−1∑
j=0

1

j!
((α+ 1)(k − 1))j

≤ e−α(k−1)(1 + α)k−1

k−1∑
j=0

1

j!
(k − 1)j

≤ e−α(k−1)(1 + α)k−1ek−1

= exp ((k − 1) (−α+ 1 + ln (1 + α))) .

Now put
t0 := ∥(xk, . . . , xn)∥NF,k

≥ 0.

If t0 = 0 we are done. If t0 > 0 then for every 0 < ε < t0

α(t0 − ε) =
1

k − 1

n∑
i=k

F

(
t0 − ε

xi

)
> 4.

Since k > 1, this implies

P
{
ω

∣∣∣∣ k- max
1≤i≤n

|xiξi(ω)| ≤ t0 − ε

}
≤ exp((k − 1)(−3 + ln 5)) ≤ 1/2.

Thus

E k- max
1≤i≤n

|xiξi| ≥ (t0 − ε) P
{
ω

∣∣∣∣ k- max
1≤i≤n

|xiξi(ω)| ≥ t0 − ε

}
≥ t0 − ε

2
.

Letting ε tend to 0 we obtain the first part of the desired estimate.
Now we show the second part of the estimate. We observe that for all l ≤ n− k + 1

ℓ- min
1≤i≤k+ℓ−1

|xiξi(ω)| = k- max
1≤i≤k+ℓ−1

|xiξi(ω)|.

This implies
E k- max

1≤i≤n
|xiξi| ≥ max

1≤ℓ≤n−k+1
E ℓ- min

1≤i≤k+ℓ−1
|xiξi|.

Finally, the “In particular” part of the theorem follows from Proposition 4.4. Note
that in Proposition 4.4 the sequence (xi) is in increasing order while in the lemma we are
proving now it is in decreasing order. 2

In the next lemma we provide a lower estimate on ∥ · ∥NF,k
, appearing in Lemma 5.6.

Lemma 5.7 Let 1 < k ≤ n. Let ξ1, . . . , ξn be i.i.d. random variables with E|ξi| = 1. Let
F (t) = P(|ξ1| > t) be a strictly decreasing function such that N = − lnF is an Orlicz
function. Let M be the Orlicz function defined by

M(s) =

∫ s

0

∫
1
t
≤|ξ1|

|ξ1|dPdt.
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Let

NF,k(t) =
F (1/t)

4(k − 1)
.

Let k0 =
[
4(k−1)
F (1)

]
and assume that k + k0 ≤ n. Then for all x1 ≥ . . . ≥ xn > 0

∥(xk+k0 , . . . , xn)∥M ≤
(
1 +

ln(8(k − 1))

N(1)

)
∥(xk, . . . , xn)∥NF,k

.

Proof. Since both functions ∥ · ∥M and ∥ · ∥NF,k
are homogeneous, we may assume

that ∥(xk+k0 , . . . , xn)∥M = 1. Thus, without loss of generality, we can assume that∑n
i=k+k0

M(xi) = 1 (otherwise we pass from the sequence {xi}i to {xi/(1 + ε)}i for an
suitably small ε > 0).

We put

A := F−1(α) = 1 +
ln(8(k − 1))

N(1)
.

Note that by (6), N(A) ≥ AN(1) ≥ ln 8 > 2.

Case 1: xk+k0 ≥ 1/A. Then xk ≥ xk+1 ≥ . . . ≥ xk+k0 ≥ 1/A.

Since F is a decreasing function, 1/F−1 is increasing and

n∑
i=k

F
(
(xiA)

−1) ≥ k+k0∑
i=k

F
(
(xiA)

−1) ≥ (k0 + 1)F (1) > 4(k − 1).

This means that
∥(xk, . . . , xn)∥NF,k

≥ 1/A.

Case 2: xk+k0 < 1/A. Then 1/A > xk+k0 ≥ . . . ≥ xn.

Since
∫

1
t
≤|ξ1| |ξ1|dP is an increasing function of t, we observe

M(s) =

∫ s

0

∫
1
t
≤|ξ1|

|ξ1|dPdt ≤ s

∫
1
s
≤|ξ1|

|ξ1|dP.

By (16), applied with t = 1/s, we obtain that for all positive s∫
1/s≤|ξ1|

|ξ1|dP ≤
(
1 +

1

N(1/s)

)
1

s
F (1/s).

Recall that N is increasing and N(A) > 2. Thus for all s ≤ 1/A we have

M(s) ≤ s

∫
1
s
≤|ξ1|

|ξ1|dP ≤ 2 F (1/s).
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By the condition of Case 2, xi ≤ 1/A for i ≥ k + k0. This implies

(29) 1 =
n∑

i=k+k0

M(xi) ≤ 2
n∑

i=k+k0

F

(
1

xi

)
.

Now, by (6), we have N(y) ≥ βN(y/β) for every y ≥ 0 and β ≥ 1. Since N = − lnF ,
we observe

F (y) ≤ F (y/β)β

for every y ≥ 0 and β ≥ 1. Since F is decreasing, it implies

F (y) ≤ F (y/β) F (1)β−1

for every y ≥ β ≥ 1. Applying the last inequality with y = 1/xi and β = A, we obtain
for every i ≥ k + k0

F (1/xi) ≤ F (1/(Axi)) F (1)A−1.

By (29),
n∑

i=k

F (1/(Axi)) ≥
1

F (1)A−1

n∑
i=k+k0

F (1/xi) ≥
1

2F (1)A−1
.

Now, by the choice of A,

A− 1 =
ln(8(k − 1))

ln(1/F (1))
,

and hence

2F (1)A−1 =
1

4(k − 1)
.

Thus,
n∑

i=k

F (1/(Axi)) ≥
1

4(k − 1)
,

which implies
∥(xk, . . . , xn)∥NF,k

≥ 1/A.

This completes the proof. 2

Finally we complete the proof of Theorem 3.5.

Proof of the lower bound in Theorem 3.5. Let k0 =
[
4(k−1)
F (1)

]
. Applying Lemma 5.6

with l = k0 we obtain

E k- max
1≤i≤n

|xiξi| ≥ max

{
1

2
∥(xk, . . . , xn)∥NF,k

,
(
1− 1√

2π

)
max

1≤j≤k0
∥ (1/xi)

k+k0−j
i=1 ∥−1

2e
k0−j+1

N

}
.

By Lemma 5.7 we have for all x with x1 ≥ . . . ≥ xn > 0

∥(xk+k0 , . . . , xn)∥M ≤ A ∥(xk, . . . , xn)∥NF,k
,
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where A = 1 + ln(8(k−1))
N(1)

. Thus

E k- max
1≤i≤n

|xiξi| ≥ 1

4A
∥(xk+k0 , . . . , xn)∥M +

1

2

(
1− 1√

2π

)
max

1≤j≤k0
∥ (1/xi)

k+k0−j
i=1 ∥−1

2e
k0−j+1

N

=
1

4A
∥(xk+k0 , . . . , xn)∥M +

1

2

(
1− 1√

2π

)
max

0≤ℓ≤k0−1
∥ (1/xi)

k+ℓ
i=1 ∥

−1
2e
ℓ+1

N
.

2
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[11] Y. Gordon, O. Guédon, M. Meyer, A. Pajor, On the Euclidean sections of some Banach
spaces and operator spaces, Math. Scandinavica 91 (2002), 247–268.

[12] Y. Gordon, A. E. Litvak, S. Mendelson, A. Pajor, Gaussian averages of interpolated
bodies and applications to approximate reconstruction, J. Approx. Theory, 149 (2007), 59–73.
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