
Probabilités/Probability Theory

Minima of sequences of Gaussian random variables
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Abstract. For a given sequence of real numbers a1, . . . , an we denote the k-th smallest one by k- min1≤i≤n ai.
We show that there exist two absolute positive constants c and C such that for every sequence
of positive real numbers x1, . . . , xn and every k ≤ n one has

c max
1≤j≤k

k + 1− j∑n
i=j 1/xi

≤ E k- min
1≤i≤n

|xigi| ≤ C ln(k + 1) max
1≤j≤k

k + 1− j∑n
i=j 1/xi

,

where gi ∈ N(0, 1), i = 1, . . . , n, are independent Gaussian random variables. Moreover, if
k = 1 then the left hand side estimate does not require independence of the gi’s. Similar
estimates hold for E k- min1≤i≤n |xigi|p as well.

Résumé. Pour une suite a1, . . . , an des nombres réels, on note le k-ième plus petit membre par
k- min1≤i≤n ai. On démontre qu’il existe deux constants positives c et C telles que pour
toute suite x1, . . . , xn des nombres réels et pour tout k ≤ n, on ait

c max
1≤j≤k

k + 1− j∑n
i=j 1/xi

≤ E k- min
1≤i≤n

|xigi| ≤ C ln(k + 1) max
1≤j≤k

k + 1− j∑n
i=j 1/xi

.

Ici gi ∈ N(0, 1), i = 1, . . . , n, sont des variables aléatoires Gaussiennes indépendentes. En
plus, si k = 1, on n’a pas besoin de l’indépendence des gi’s pour obtenir l’inégalité du gauche.
On démontre également les inégalités correspondantes pour E k- min1≤i≤n |xigi|p.

For a given sequence of real numbers (ai)n
i=1 we denote its non-decreasing rearrangement by

(k- min1≤i≤n ai)n
k=1, thus 1- min1≤i≤n ai = min1≤i≤n ai, 2- min1≤i≤n ai is the next smallest, etc.

Given A ⊂ N we denote its cardinality by |A|. We say that (Aj)k
j=1 is a partition of {1, 2, . . . , n}

if ∅ 6= Aj ⊂ {1, 2, . . . , n}, j ≤ k, ∪j≤kAj = {1, 2, . . . , n}, and Ai ∩Aj = ∅ for i 6= j. The canonical
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Euclidean norm and the canonical inner product on Rn we denote by | · | and 〈·, ·〉. By 1/t we
mean ∞ if t = 0 and 0 if t = ∞.

In this note we present two theorems. The first one investigates the behavior of the expectation
of the minimum of symmetric Gaussian random variables.

Theorem 1 Let p > 0. Let (xi)n
i=1 be a sequence of real numbers. Let gi ∈ N(0, 1), i ≤ n, be

Gaussian random variables. Then

1
1+p

(
π
2

)p/2

(
n∑

i=1

|xi|−1

)−p

≤ E min
1≤i≤n

|xigi|p.

Moreover, if the gi’s are independent then

E min
1≤i≤n

|xigi|p ≤ Γ(1 + p)
(

π
2

)p/2

(
n∑

i=1

|xi|−1

)−p

.

An immediate consequence of this theorem is the following Corollary.

Corollary 2 Let p > 0. Let (xi)n
i=1 be a sequence of real numbers. Let fi ∈ N(0, 1), i ≤ n, be

Gaussian random variables and gi ∈ N(0, 1), i ≤ n, be independent Gaussian random variables.
Then

E min
1≤i≤n

|xigi|p ≤ Γ(2 + p) E min
1≤i≤n

|xifi|p.

Remark. This inequality is connected to the Mallat-Zeitouni problem ([2]). In fact, to prove
a particular case of Conjecture 1 from [2] it is enough to prove our Corollary for p = 2 and with
factor 1 instead of Γ(2 + p) ([3]). Thus we provide the solution of this case up to constant 6.

Next theorem deals with the moments of k- min of independent symmetric Gaussian variables.

Theorem 3 Let p > 0. Let 2 ≤ k ≤ n. Let 0 < x1 ≤ x2 ≤ ... ≤ xn. Let gi ∈ N(0, 1), i ≤ n, be
independent Gaussian random variables. Then

cp max
1≤j≤k

k + 1− j∑n
i=j 1/xi

≤
(

E k- min
1≤i≤n

|xigi|p
)1/p

≤ C(p, k) max
1≤j≤k

k + 1− j∑n
i=j 1/xi

,

where cp = 1
2e

√
π
2

(
1− 1

4
√

π

)1/p

and C(p, k) = 4
√

π max{p, ln(k + 1)}.

Remark. Theorem 3 shows that we may evaluate sums of the form
∑

k∈I E k- min1≤i≤n |xigi|p,
where I ⊂ {1, 2, ..., n} is any subset of integers. Related inequalities, though in a different context,
were developed initially in [1].

Theorems 1 and 3 are consequences of the following Lemmas, which are of independent interest.

Lemma 4 Let 0 < x1 ≤ x2 ≤ ... ≤ xn. Let gi ∈ N(0, 1), i ≤ n, be Gaussian random variables.
Let a =

√
2/π

∑n
i=1 1/xi. Then for every t > 0

P
{

ω

∣∣∣∣ min
1≤i≤n

|xigi(ω)| ≤ t

}
≤ at.

Moreover, if the gi’s are independent then for every t > 0

P
{

ω

∣∣∣∣ min
1≤i≤n

|xigi(ω)| > t

}
≤ e−at.
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Lemma 5 Let 1 ≤ k ≤ n. Let 0 < x1 ≤ x2 ≤ ... ≤ xn. Let gi ∈ N(0, 1), i ≤ n, be independent
Gaussian random variables. Let

a =
e

k

√
2
π

n∑
i=1

1
xi

.

Then for every 0 < t < 1/a one has

P
{

ω

∣∣∣∣k- min
1≤i≤n

|xigi(ω)| ≤ t

}
≤ 1√

2πk

(at)k

1− at
. (1)

In the rest of this note we provide proofs of Theorems 1 and 3. Proofs of all lemmas will be
shown in a forthcoming paper.
Proof of Theorem 1. Let us note that if xi = 0 for some i then the expectation is 0 and the
Theorem is trivial. Therefore, without loss of generality, we assume that xi > 0 for every i.

Denote

A =

(√
2
π

n∑
k=1

1/xk

)−p

.

Then, by the first estimate in Lemma 4, we have

E min
1≤i≤n

|xigi|p =
∫ ∞

0

P
{

ω

∣∣∣∣ min
1≤i≤n

|xigi(ω)| > t1/p

}
dt ≥

∫ A

0

(
1− t1/p A−1/p

)
dt =

A

1 + p
,

which proves the first estimate.
Now assume that the gi’s are independent and use the second estimate of Lemma 4. We obtain

E min
1≤i≤n

|xigi|p =
∫ ∞

0

P
{

ω

∣∣∣∣ min
1≤i≤n

|xigi(ω)| > t1/p

}
dt ≤

∫ ∞
0

exp
(
−t1/p A−1/p

)
dt = A pΓ(p),

which implies the desired result. 2

To prove Theorem 3 we need also the following combinatorial lemma.

Lemma 6 Let 1 ≤ k ≤ n. Let (ai)n
i=1, be a nonincreasing sequence of positive real numbers. Then

there exists a partition (Al)l≤k of {1, 2, ..., n} such that

min
1≤l≤k

∑
i∈Al

ai ≥ a := 1
2 min

1≤j≤k

1
k + 1− j

n∑
i=j

ai.

Remark. In fact one can show that the Al’s can be taken as intervals, i.e. Al = {i | nl−1 < i ≤ nl},
l ≤ k, for some sequence 0 = n0 < 1 ≤ n1 < n2 < · · · < nk = n.

Proof of Theorem 3. First we show the lower estimate. Since for every sequence (ai)n
i=1 and

every r < k one has
k- min(ai)n

i=1 ≥ (k − r)- min(ai)n
i=r+1,

it is enough to show that for every k we have

cp k

(
n∑

i=1

1/xi

)−1

≤
(

E k- min
1≤i≤n

|xigi|p
)1/p

. (2)

Let a be as in Lemma 5 and t = (2a)−p. Then, by Lemma 5 and since k ≥ 2, we have

P
{

ω

∣∣∣∣k- min
1≤i≤n

|xigi(ω)|p ≥ t

}
≥ 1− 1√

2πk

(at1/p)k

1− at1/p
≥ 1− 1

4
√

π
.
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Therefore (2) follows from the standard estimate

E k- min
1≤i≤n

|xigi|p ≥ tp P
{

ω

∣∣∣∣ k- min
1≤i≤n

|xigi(ω)| ≥ t

}
.

Now we prove the upper bound. Let (Aj)j≤k be the partition given by Lemma 6 for se-
quence ai = 1/xi, i ≤ k. The number q, q ≥ 1, will be specified later. It is easy to see that
k- min1≤i≤n |xigi|p ≤ maxj≤k

{
mini∈Aj

|xigi|p
}

j≤k
. Therefore, using Theorem 1, we get

(
E k- min

1≤i≤n
|xigi|p

)1/p

≤

E

∑
j≤k

(
min
i∈Aj

|xigi|p
)q
1/q


1/p

≤

E
∑
j≤k

min
i∈Aj

|xigi|pq

1/(pq)

≤
√

π
2

Γ(1 + pq)
∑
j≤k

∑
i∈Aj

1/xi

−pq1/(pq)

≤
√

π
2 (k Γ(1 + pq))1/(pq) max

j≤k

∑
i∈Aj

1/xi

−1

.

Applying Lemma 6, we obtain(
E k- min

1≤i≤n
|xigi|p

)1/p

≤
√

2π (k Γ(1 + pq))1/(pq) max
1≤j≤k

k + 1− j∑n
i=j 1/xi

.

To complete the proof we choose q = ln(k+1)
p if p ≤ ln(k + 1), q = 1 otherwise, and apply Stirling’s

formula. 2

Remark. Finally we would like to note that our results can be extended to the case of general
distributions satisfying certain conditions. Namely, fix α > 0, β > 0 and say that a random
variable ξ satisfies an (α, β)-condition if for every t > 0 one has

P (|ξ| ≤ t) ≤ αt and P (|ξ| > t) ≤ e−βt.

Then Theorems 1, 3 and Lemmas 4, 5 hold for gi’s satisfying an (α, β)-condition (even not identi-
cally distributed), with constants depending on α, β. More precisely, in the estimates of Theorem 1,
(π/2)p/2 should be substituted by α−p and β−p correspondingly; in Theorem 3,

√
π/2 should be

substituted by 1/α and, in the upper estimate, 4
√

π by 4
√

2/β; in Lemma 5 and in the first esti-
mate of Lemma 4,

√
2/π should be substituted by α; in the second estimate of Lemma 4,

√
2/π

should be substituted by β.
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