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Minima of sequences of Gaussian random variables
Minima des suites des variables aléatoires Gaussiennes
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Abstract.

Résumé.

For a given sequence of real numbers a4, . .., a, we denote the k-th smallest one by k- min; <;<n, a;.

We show that there exist two absolute positive constants ¢ and C' such that for every sequence

of positive real numbers z1,...,z, and every k < n one has
k+1—j

k+1—j
=7 < E k- mi igi| < Cln(k+1 =
clrgjagxk ZZL:J l/ﬂfl > 1217:1%1" |x7,gl| = Il( + ) 1?‘]&%% Z:L:j l/xla

where g; € N(0,1), i = 1,...,n, are independent Gaussian random variables. Moreover, if
k = 1 then the left hand side estimate does not require independence of the g;’s. Similar
estimates hold for E k- min; <<, |2:g;|P as well.

Pour une suite aq,...,a, des nombres réels, on note le k-ieme plus petit membre par
k-mini<;<pn ;. On démontre qu’il existe deux constants positives ¢ et C telles que pour
toute suite x1,...,x, des nombres réels et pour tout k < n, on ait
k+1—j . k+1—3
¢ max nij <E k- min |2;9;| < C In(k+1) max nij
1<j<k Zi:j 1/z; 1<i<n 1<j<k Zi:j 1/x;

Ici g; € N(0,1), i =1,...,n, sont des variables aléatoires Gaussiennes indépendentes. En
plus, si k£ = 1, on n’a pas besoin de I'indépendence des g;’s pour obtenir I'inégalité du gauche.
On démontre également les inégalités correspondantes pour E k- ming<;<y, |2;g:|P.

For a given sequence of real numbers (a;)?_; we denote its non-decreasing rearrangement by
(k- minj<j<n @)}y, thus 1-mini<;<, a; = minj<ij<p a4, 2- ming<;<p ; is the next smallest, etc.

Given A C N we denote its cardinality by |A|. We say that (A;)¥_, is a partition of {1,2,...,n}

j=1

if0#A; c{1,2,...,n}, j <k, Uj<rA; ={1,2,...,n}, and A, N A; = for i # j. The canonical
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Euclidean norm and the canonical inner product on R™ we denote by |- | and (-,-). By 1/t we
mean oo if ¢t =0 and 0 if ¢t = oo.

In this note we present two theorems. The first one investigates the behavior of the expectation
of the minimum of symmetric Gaussian random variables.

Theorem 1 Let p > 0. Let (x;)7_; be a sequence of real numbers. Let g; € N(0,1), ¢ < n, be
Gaussian random variables. Then

n -p
p/2 — .
s (0 (Sh) <2 i
=1 - -

Moreover, if the g;’s are independent then

1<i<n

n —p
E min |z;9;/” < T(1+ p) (%)p/2 (Z xi_1> .
i=1

An immediate consequence of this theorem is the following Corollary.

Corollary 2 Let p > 0. Let (x;)?, be a sequence of real numbers. Let f; € N(0,1), i < n, be
Gaussian random variables and g; € N(0,1), i < n, be independent Gaussian random variables.
Then
. P < . e
E min |2;gi[” <T(2+p)E min |z;f;

Remark. This inequality is connected to the Mallat-Zeitouni problem ([2]). In fact, to prove
a particular case of Conjecture 1 from [2] it is enough to prove our Corollary for p = 2 and with
factor 1 instead of I'(2 + p) ([3]). Thus we provide the solution of this case up to constant 6.

Next theorem deals with the moments of k- min of independent symmetric Gaussian variables.

Theorem 3 Letp > 0. Let 2 <k <mn. Let 0 < a1 < a9 < ...<x,. Let g; € N(0,1), i <mn, be
independent Gaussian random variables. Then

k41— /e k+1—j
¢p max # < |(E k- min |x;g;|” < C(p,k) max #,
1<j<k Zi:j 1/x; 1<i<n 1<j<k Zi:j 1/x;

1/
where ¢, = 5 /3 (1 — ﬁ) " and C(p, k) = 4/m max{p,In(k +1)}.

Remark. Theorem 3 shows that we may evaluate sums of the form ), _; E k- mini<;<p, |2::[?,
where I C {1,2,...,n} is any subset of integers. Related inequalities, though in a different context,
were developed initially in [1].

Theorems 1 and 3 are consequences of the following Lemmas, which are of independent interest.

Lemma 4 Let 0 < 1 < 9 < ... < z,. Let g; € N(0,1), i < n, be Gaussian random variables.
Let a =+/2/7 > " | 1/x;. Then for every t >0

2

Moreover, if the g;’s are independent then for every t > 0

i o < < at.
1r§nilé1n |zig:(w)| < t} <at

: . < 7at.
IP’{w ‘lr<ni1i1n|x1gz(w) > t} <e



Lemma 5 Let 1 <k <n. Let 0 < z1 < a2 < ... < z,. Let g; € N(0,1), i <n, be independent

Gaussian random variables. Let .
e 2 1
=iVr 2

i=1
Then for every 0 <t < 1/a one has

1 (at)k
ok 1—at

(1)

i

- min |z05(w)| <t b <
]P’{w ’k 1r§niléln|xlgl(w)| < t} <

In the rest of this note we provide proofs of Theorems 1 and 3. Proofs of all lemmas will be
shown in a forthcoming paper.

Proof of Theorem 1. Let us note that if x; = 0 for some 7 then the expectation is 0 and the
Theorem is trivial. Therefore, without loss of generality, we assume that x; > 0 for every i.

Denote .
A= (\/Ez l/l‘k> .
k=1

Then, by the first estimate in Lemma 4, we have

00 A
A
E min |xigi\p:/ P{w‘ min |z;g;(w)| >t1/p}dt>/ (1—t1/pA_1/p) dt = ——,
1<i<n 0 1<i<n 0 L+p

which proves the first estimate.
Now assume that the g;’s are independent and use the second estimate of Lemma 4. We obtain

oo
E min |z;9;° = Plw
1<i<n o

which implies the desired result. O

min |z;g;(w)| > t1/P } dt < / exp (—tl/p A_l/p> dt = ApT(p),
0

1<i<n

To prove Theorem 3 we need also the following combinatorial lemma.

Lemma 6 Let1 <k <n. Let (a;)_, be a nonincreasing sequence of positive real numbers. Then
there exists a partition (A;)i<i of {1,2,...,n} such that

n
. 1 . 1
min g a; 2 a:=35 mn -——— g a;.
1<I<k 1<j<k k+1—j5 “~
i€A; i=j

Remark. Infact one can show that the A;’s can be taken as intervals, i.e. 4; = {i | nj—1 < < n},
| <k, for some sequence 0 =ng <1<ny <ng <---<ng=n.

Proof of Theorem 3. First we show the lower estimate. Since for every sequence (a;)?_; and
every r < k one has
F-min(a)y > (k — r)-min(a,)}, ;.

it is enough to show that for every k we have
n -1 1/p
1/z; < (E k- mi :9i|P . 2
cpk (2 /%) < ( k- min [@igi| ) (2)
i=
Let a be as in Lemma 5 and ¢t = (2a)"P. Then, by Lemma 5 and since k > 2, we have

1 (at?/P)k 1

>1 .
Vork 1—atl/p = 4ﬁ

- mi 0 P> >1—
]P’{w‘k 1r§rliléln|xlgl(w)| t} >1



Therefore (2) follows from the standard estimate

_ p > p _ 1 r > .
E k 1r<nzmn |x;gi|P >t P{ ‘ k 1r§nilé1n|ngz(w)| > t}
Now we prove the upper bound. Let (A4;);j<x be the partition given by Lemma 6 for se-
quence a; = 1/xz;, ¢ < k. The number ¢, ¢ > 1, will be specified later. It is easy to see that
k-ming<;<p |2ig;|P < max;<g {minieAj |xigi|p}j§k. Therefore, using Theorem 1, we get

AN 1/(pa)
1/p q
p pq
<]E k- 11<nlm |z:g:|P > < |E Z <11211} |94 > < |E me |95 ]
i<k i<k
—pq 1/(pQ) -1
7T 1/(pq)
< . s .
\/, (1+ pq) Z 1/x; < \ﬂ (k T(1+pq)) rjnga’i( Z 1/x;
i<k \i€A; i€A;

Applying Lemma 6, we obtain

= 1/(pa) k+1-j
. P < - J
(E k- min |zigi| ) <Var (kT(1+pg)) """ max ST 1,

To complete the proof we choose ¢ = w if p<lIn(k+1), ¢ =1 otherwise, and apply Stirling’s
formula. o

Remark. Finally we would like to note that our results can be extended to the case of general
distributions satisfying certain conditions. Namely, fix « > 0, § > 0 and say that a random
variable £ satisfies an (o, 8)-condition if for every ¢ > 0 one has

P (¢ <t)<at and P (|| > t) <e P

Then Theorems 1, 3 and Lemmas 4, 5 hold for g;’s satisfying an («, 3)-condition (even not identi-
cally distributed), with constants depending on «, 3. More precisely, in the estimates of Theorem 1,
(m/2)P/? should be substituted by o and =P correspondingly; in Theorem 3, \/7/2 should be
substituted by 1/« and, in the upper estimate, 4,/7 by 4\/5/5; in Lemma 5 and in the first esti-
mate of Lemma 4, \/2/7 should be substituted by «; in the second estimate of Lemma 4, \/2/7
should be substituted by .
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