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Abstract

Let A be a matrix whose columns X1, . . . , XN are independent random vectors in Rn. Assume that p-th moments
of 〈Xi, a〉, a ∈ Sn−1, i ≤ N , are uniformly bounded. For p > 4 we prove that with high probability A has the
Restricted Isometry Property (RIP) provided that Euclidean norms |Xi| are concentrated around

√
n and that the

covariance matrix is well approximated by the empirical covariance matrix provided that maxi |Xi| ≤ C(nN)1/4.
We also provide estimates for RIP when E φ (|〈Xi, a〉|) ≤ 1 for φ(t) = (1/2) exp(tα), with α ∈ (0, 2].

Soit A une matrice dont les colonnes X1, . . . , XN sont des vecteurs indépendants de Rn. On suppose que les
moments d’ordre p des 〈Xi, a〉, a ∈ Sn−1, 1 ≤ i ≤ N sont uniformément bornés pour un p > 4. On démontre que
si les normes euclidiennes des |Xi| se concentrent autour de

√
n , la matrice A vérifie une propriété d’isométrie

restreinte avec grande probabilité et que si maxi |Xi| ≤ C(nN)1/4 la matrice de covariance empirique est une
bonne approximation de la matrice de covariance. On démontre aussi une propriété d’isométrie restreinte quand
E φ (|〈Xi, a〉|) ≤ 1 pour tout a ∈ Sn−1, 1 ≤ i ≤ N avec φ(t) = (1/2) exp(tα) et α ∈ (0, 2].

1. Introduction. Our two main results go in two parallel directions: the Restricted Isometry Property
abbreviated as RIP and a question of Kannan-Lovász-Simonovits about an approximation of a covariance
matrix by empirical covariance matrices referred below as KLS problem.

In this note X1, . . . , XN denote independent random vectors in Rn satisfying for some function φ

∀1 ≤ i ≤ N ∀a ∈ Sn−1 E φ (|〈Xi, a〉|) ≤ 1. (1)
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We will focus on two choices of the function φ: φ(t) = tp, with p > 4, or φ(t) = (1/2) exp(tα), with
α ∈ (0, 2]. The n ×N matrix whose columns are X1, ..., XN will be denoted by A. As usual, C, C1, ...,
c, c1, ...will always denote absolute positive constants, whose values may change from line to line.

2. Restricted Isometry Property (RIP). We first recall the definition of the RIP, which was
introduced in [6], in order to study the exact reconstruction problem by `1 minimization. It is noteworthy
that the problem of reconstruction can be reformulated in terms of convex geometry, namely in terms of
neighborliness of the symmetric convex hull of X1, . . . , XN , as was shown in [7].

Let T be an arbitrary n × N matrix. For 1 ≤ m ≤ N the isometry constant of T is defined as the
smallest number δm = δm(T ) satisfying

(1− δm)|z|2 ≤ |Tz|2 ≤ (1 + δm)|z|2, for z ∈ RN with |supp(z)| ≤ m. (2)

Let δ ∈ (0, 1). The matrix T is said to satisfy the RIP of order m with parameter δ if 0 ≤ δm(T ) < δ.
Returning to the vectors X1, ..., XN (independent and satisfying (1)) the concentration of |Xi|’s around

their average is controlled by the function

P (θ) := P
(

max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≥ θ

)
for θ ∈ (0, 1). (3)

Note that in order to have RIP we need P (θ) < 1, as the maximum under the probability equals to
δ1(A/

√
n), which is less than or equal to δm(A/

√
n).

Conditions saying that a random matrix satisfies RIP were investigated in many works. We refer to [8]
and references therein. In [3] the authors studied the model when a random matrix consist of independent
columns. It was proved that if Xi’s are centered of variance 1 and satisfy assumption (1) with φ(t) =
(1/2) exp(tα), α ≥ 1 then A satisfies RIP with high probability. However, due to technical reasons, the
case α < 1 was left open. Moreover, it was not clear if RIP can hold under assumptions on moments of
Xi’s. In this note we show that A satisfies RIP not only in the case α < 1 but also when the marginals
of Xi’s satisfy moments condition only, that is condition (1) with φ(t) = tp, p > 4. Note that in view of
a result by Bai, Silverstein and Yin [5] it seems that one can’t expect similar bounds when p < 4.

Theorem 1 Case 1. Let p > 4 and φ(t) = tp. Let 0 < ε < min{1, (p − 4)/4} and 0 < θ < 1. Assume
that 28/(ε θ) ≤ N ≤ c θ (c ε θ)p/2

np/4 and set

m =

[
C(ε, p) θ2p/(p−4−2ε) n

(
N

n

)−2(2+ε)/(p−4−2ε)
]

.

Case 2. Let φ(t) = (1/2) exp(tα). Assume that 8/θ ≤ N ≤ c θ exp
(
(1/2) (c θ

√
n)α)

and set

m =
[
C−2/α θ2 n

(
ln(C2/α N/(θ2 n))

)−2/α
]

.

In both cases we have P (δm(A/
√

n) ≤ θ) ≥ 1− 2−9θ − P (θ/2).

3. Kannan-Lovász-Simonovits problem (KLS). Let Xi’s and A be as above and assume additionally
that Xi’s are identically distributed as a centered random vector X. KLS problem asks how fast the
empirical covariance matrix T := (1/N)AA> converges to the covariance matrix Σ := (1/N)EAA>

(originally it was asked about so-called log-concave random vectors). In particular, is it true that with
high probability the operator norm ‖T − Σ‖ ≤ ε‖Σ‖ for N being proportional to n? The corresponding
important question in Random Matrix Theory is about the limit behavior of smallest and largest singular
values. In the case of Wishart matrices, that is when the coordinates of X are i.i.d. random variables with
finite fourth moment, the Bai-Yin theorem [4] states that the limits of minimal and maximal singular
numbers of T are (1 ±

√
β)2 as n, N → ∞ and n/N → β ∈ (0, 1). Moreover, it is known [5] that
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boundedness of fourth moment is needed in order to have the convergence of the largest singular value.
The asymptotic non-limit behavior (also called “non-asymptotic” in Statistics), i.e., sharp upper and
lower bounds for singular values in terms of n and N , when n and N are sufficiently large were studied
in several works. To keep the notation more compact and clear we set

M := max
i≤N

|Xi|, S := sup
a∈Sn−1

∣∣∣∣∣ 1
N

N∑
i=1

(
〈Xi, a〉2 − E〈Xi, a〉2

)∣∣∣∣∣ .

Note that the bound S ≤ ε is equivalent to bounds 1 ± ε for minimal/maximal singular values. For
Gaussian matrices it is known that singular values satisfy with probability close to one

S := sup
a∈Sn−1

∣∣∣∣∣ 1
N

N∑
i=1

(
〈Xi, a〉2 − E〈Xi, a〉2

)∣∣∣∣∣ ≤ C
√

n/N. (4)

In [1], [2] the same estimates were obtained for large class of random matrices, which in particular does not
require that entries of the columns are independent or that Xi’s are identically distributed. In particular
it solves the original KLS problem. More precisely, under assumptions that Xi’s satisfy condition (1) with
φ(t) = et/2 and that M ≤ C(Nn)1/4 with high probability (both conditions hold for log-concave vectors).
Of course, in view of Bai-Yin theorem the question raises if one can substitute the function φ(t) = et/2
with the function φ = tp for the “right” restriction p ≥ 4. The first attempt in this direction was done
in [10], where the bound S ≤ C(p, K)(n/N)1/2−2/p(ln lnn)2 was obtained for every p > 4 provided that
M ≤ K

√
n. Clearly, ln lnn is a “parasitic” term, which, in particular, does not allow to solve the KLS

problem with N proportional to n. Very recently, the “right” upper bound S ≤ C(n/N)1/2 was proved
for p > 8 provided that M ≤ C(Nn)1/4 ([9]). The purpose of our note is to show that one can solve the
KLS problem in the case p > 4. Thus only the case p = 4 is left open.

Theorem 2 Let 4 < p ≤ 8 and φ(t) = tp. Let ε ∈ (0, 1) and γ = p− 4− 2ε. Then

S ≤ C

(
1
N

M2 + C(p, ε)
( n

N

)γ/p
)

,

with probability larger than 1− 8e−n − 4ε−p/2 max{N−3/2, n−(p/4−1)}.

In particular Theorem 2 implies that if M ≤ C1(p, ε)nγ/(2p)N1/2−γ/(2p) with large probability, then
S ≤ C2(p, ε) (n/N)γ/p with large probability.

Proofs of both Theorems are based on estimates for fundamental parameters of sequences of independent
random vectors. Let 1 ≤ k ≤ N and let X1, · · · , XN be random vectors in Rn. We define Ak and Bk by

Ak := sup
a∈SN−1

|supp(a)|≤k

∣∣∣∣∣
N∑

i=1

aiXi

∣∣∣∣∣ and B2
k := sup

a∈SN−1
|supp(a)|≤k

∣∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

aiXi

∣∣∣∣∣
2

−
N∑

i=1

a2
i |Xi|2

∣∣∣∣∣∣ . (5)

The main technical result gives estimates for Ak and Bk.
Theorem 3 Let X1, . . . , XN be independent random vectors in Rn satisfying (1). Let p > 4, σ ∈ (2, p/2),
α ∈ (0, 2), t > 0 and λ ≥ 1. Define additional parameters M1 and β in two cases.
Case 1. φ(x) = xp. We assume that λ ≤ p and set

M1 := C1(σ, λ, p)
√

k

(
N

k

)σ/p

and β := C2(σ, λ)N−λ + C3(σ, λ)
N2

tp
.

Case 2. φ(x) = (1/2) exp(xα). Assume that λ > 2 and set
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M1 := (Cλ)1/α
√

k

(
ln

N

k
+

1
α

)1/α

and β := 4N−λ +
N2

2 exp((2t)α)
.

In both cases assume that β < 1/32. Then with probability at least 1−
√

β one has

Ak ≤ (1− 4
√

β)−1
(
M + 18

√
t
√

M + M1

)
and

B2
k ≤ (1− 4

√
β)−2

(
M2 + (730t + M1) M + 2M2

1

)
.

Combining definitions (2), (3) and (5) we see that the RIP is controlled by Bm and P (θ), and that
Theorem 1 immediately follows from Theorem 3, with an appropriate choice of parameters (σ = 2 + ε).

The proof of Theorem 2 requires several steps. Symmetrization and use of formulas for sums of k
smallest order statistics of independent non-negative random variables with heavy tails reduce the problem
of estimating S with large probability to estimates for Ak given in Theorem 3.

The proof of Theorem 3 is based on the study of suprema of bilinear forms of independent random
vectors as developed in [9]. Let X1, . . . , XN be independent random vectors in Rn. We let for 1 < k ≤ N
and I ⊂ {1, ..., N},

Qk(I) = sup
E⊂{1,...,N}

|E|≤k

sup
a∈BE

2

〈 ∑
i∈E∩I

aiXi,
∑

j∈E∩Ic

ajXj

〉
. (6)

It turns out that if the Xi’s satisfy (1) for φ(x) = xp (p > 4), then there is a recursive inequality for
Qk(I): given ε ∈ (0, 1/2), γ ∈ (1/2, 1), and any t > 0, we have, with large probability,

Qk(I) ≤
Q[γk](I) + tAk

1− 2ε
(7)

Here ε represents the size of an ε-net in BE
2 , over all E of dimension ≤ k, so it naturally appears in the

estimate of probability. Iterating (7) we get an upper bound of the form Qk(I) ≤ C (tM + M1Ak). This
in turn leads to the required upper bounds by methods already used in earlier papers (see e.g., [1], [3],[9]).
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