
On the interval of fluctuation of the singular
values of random matrices
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Abstract

Let A be a matrix whose columns X1, . . . , XN are independent
random vectors in Rn. Assume that the tails of the 1-dimensional
marginals decay as P(| 〈Xi, a〉 | ≥ t) ≤ Ct−p uniformly in a ∈ Sn−1

and i ≤ N . Then for p > 4 we prove that with high probability A/
√
n

has the Restricted Isometry Property (RIP) provided that Euclidean
norms |Xi| are concentrated around

√
n. We also show that the covari-

ance matrix is well approximated by the empirical covariance matrix.
As consequence, we establish a good rate of convergence when N is
proportional to n, provided that maxi |Xi| ≤ C

√
n with high prob-

ability. Moreover, we give precise estimates for both problems when
the decay is of the type exp(−tα), with α ∈ (0, 2].
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1 Introduction and main results

Fix positive integers n,N and let A be an n × N random matrix whose
columns X1, . . . , XN are independent random vectors in Rn. For a subset
I ⊂ {1, . . . , N} of cardinality m, denote by AI the n × m matrix whose
columns are Xi, i ∈ I. We are interested in estimating the interval of fluc-
tuation of the spectrum of some matrices related to A when the random
vectors Xi, i ≤ N have heavy tails; firstly, uniform estimates of the spec-
trum of (AI)>AI which is the set of squares of the singular values of AI ,
where I runs over all subsets of cardinality m for some fixed parameter m
and secondly estimates for the spectrum of AA>. The first problem is related
to the notion of Restricted Isometry Property (RIP) with m a parameter of
sparsity whereas the second is about approximation of a covariance matrix
by empirical covariance matrices.

These questions have been substantially developed over recent years and
many papers devoted to these notions were written. In this work, we say
that a random vector X satisfies the tail behavior H(φ), if

H(φ) : ∀a ∈ Sn−1 ∀t > 0 P (| 〈X, a〉 | ≥ t) ≤ 1/φ(t) (1)

for a certain function φ and we assume that Xi satisfies H(φ) for all i ≤ N .
We will focus on two choices of the function φ, namely φ(t) = tp, with p > 4,
which means heavy tail behavior for marginals, and φ(t) = (1/2) exp(tα),
with α ∈ (0, 2], which corresponds to an exponential power type tail behavior
and makes the link to the known subexponential case (α = 1, see [2, 3]).

The concept of the Restricted Isometry Property was introduced in [10]
in order to study an exact reconstruction problem by `1 minimization algo-
rithm, classical in compressed sensing. Although it provided only a sufficient
condition for the reconstruction, it played a decisive role in the development
of the theory, and it is still an important property. This is mostly due to
the fact that a large number of important classes of random matrices have
RIP. It is also noteworthy that the problem of reconstruction can be refor-
mulated in terms of convex geometry, namely in terms of neighborliness of
the symmetric convex hull of X1, . . . , XN , as was shown in [12].

Let us recall the intuition of RIP (for the definition see (6) below). For
an n × N matrix T and 1 ≤ m ≤ N , the isometry constant of order m of
T is the parameter 0 < δm(T ) < 1 which says that the square of Euclidean
norms |Tz| and |z| are approximately equal, up to 1+δm(T ), for all m-sparse
vectors z ∈ RN (that is, |supp(z)| ≤ m). Equivalently, this means that for
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every I ⊂ {1, . . . , N} with |I| ≤ m, the spectrum of (T I)>T I is contained
in the interval [1 − δm(T ), 1 + δm(T )]. In particular when δm(T ) < θ for
small θ, then the squares of singular values of the matrices T I belong to
[1−θ, 1+θ]. Note that in compressed sensing for the reconstruction of vectors
by `1 minimization, one does not need RIP for all θ > 0 (see [12] and [11]).
The RIP contains implicitly a normalization, in particular it implies that the
Euclidean norms of the columns belong to an interval centered around one.

Let A be an n × N random matrix whose columns are X1, . . . , XN . In
view of the example of matrices with i.i.d. entries, centered and with variance
one, for which E|Xi|2 = n, we normalized the matrix by considering A/

√
n

and we introduce the concentration function

P (θ) := P
(

max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≥ θ

)
. (2)

Untill now the only known cases of random matrices satisfying a RIP
were the cases of subgaussian [9, 10, 12, 22] and subexponential [4] matrices.
Our first main theorem says that matrices we consider have the RIP of order
m, with “large” m of the form m = nψ(n/N) with ψ depending on φ and
possibly on other parameters. In particular, when N is proportional to n,
then m is proportional to n. We present a simplified version of our result,
for the detailed version see Theorem 3.1 below.

Theorem 1.1 Let 0 < θ < 1. Let A be a random n × N matrix whose
columns X1, . . . , XN are independent and satisfy hypothesis H(φ) for some φ.
Assume that n,N are large enough. Then there exists a function ψ depending
on φ and θ such that with high probability (depending on the concentration
function P (θ)) the matrix A/

√
n has RIP of order m = [nψ(n/N)] and

δm(A/
√
n) ≤ θ.

The second problem we investigate goes back to a question of Kannan,
Lovász and Simonovits (KLS). Let Xi’s and A be as above and assume addi-
tionally that Xi’s are identically distributed as a centered random vector X.
KLS question asks how fast the empirical covariance matrix U := (1/N)AA>

converges to the covariance matrix Σ := (1/N)EAA> = EU . Of course this
depends on assumptions on X. In particular, is it true that with high prob-
ability the operator norm ‖U − Σ‖ ≤ ε‖Σ‖ for N being proportional to n?
Originally this was asked for log-concave random vectors but the general
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question of approximating the covariance matrix by sample covariance ma-
trices is an important subject in Statistics as well as on its own right. The
corresponding question in Random Matrix Theory is about the limit behavior
of smallest and largest singular values. In the case of Wishart matrices, that
is when the coordinates of X are i.i.d. centered random variables of variance
one, the Bai-Yin theorem [6] states that under assumption of boundedness
of fourth moments the limits of minimal and maximal singular numbers of
U are (1 ±

√
β)2 as n,N → ∞ and n/N → β ∈ (0, 1). Moreover, it is

known [7, 28] that boundedness of fourth moment is necessary in order to
have the convergence of the largest singular value. The asymptotic non-limit
behavior (also called “non-asymptotic” in Statistics), i.e., sharp upper and
lower bounds for singular values in terms of n and N , when n and N are
sufficiently large, was studied in several works. To keep the notation more
compact and clear we put

M := max
i≤N
|Xi|, S := sup

a∈Sn−1

∣∣∣∣∣ 1

N

N∑
i=1

(
〈Xi, a〉2 − E〈Xi, a〉2

)∣∣∣∣∣ . (3)

Note that if E〈X, a〉2 = 1 for every a ∈ Sn−1 (that is, X is isotropic), then
the bound S ≤ ε is equivalent to the fact that the singular values of U belong
to the interval [1−ε, 1+ε]. For Gaussian matrices it is known ([13, 30]) that
with probability close to one

S ≤ C
√
n/N, (4)

where C is a positive absolute constant. In [2, 3] the same estimate was
obtained for a large class of random matrices, which in particular did not
require that entries of the columns are independent, or that Xi’s are identi-
cally distributed. In particular this solved the original KLS problem. More
precisely, (4) holds with high probability under the assumptions that the Xi’s
satisfy hypothesis H(φ) with φ(t) = et/2 and that M ≤ C(Nn)1/4 with high
probability. Both conditions hold for log-concave random vectors.

Until recent time, quite strong conditions on the tail behavior of the one
dimensional marginals of the Xi were imposed, typically of subexponential
type. Of course, in view of Bai-Yin theorem, it is a natural question whether
one can replace the function φ(t) = et/2 by the function φ(t) = et

α
/2 with

α ∈ (0, 1) or φ(t) = tp, for p ≥ 4. The first attempt in this direction was done
in [32], where the bound S ≤ C(p,K)(n/N)1/2−2/p(ln lnn)2 was obtained for
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every p > 4 provided that M ≤ K
√
n. Clearly, ln lnn is a “parasitic”

term, which, in particular, does not allow to solve the KLS problem with
N proportional to n. This problem was solved in [23, 29] under strong
assumptions and in particular when M ≤ K

√
n and X has i.i.d. coordinates

with bounded p-th moment with p > 4. Very recently, in [24], the “right”
upper bound S ≤ C(n/N)1/2 was proved for p > 8 provided that M ≤
C(Nn)1/4 . The methods used in [24] play an influential role in the present
paper.

The problems of estimating the smallest and the largest singular values
are quite different. One expects weaker assumption for estimating the small-
est singular value. This already appeared in the work [29] and was pushed
further in [18] and in [31]. See also related work [19].

In this paper we solve the KLS problem for 4 < p ≤ 8, in Theorem 1.2.
Our argument works also in other cases and makes the bridge between the
known cases p > 8 and the exponential case.

Theorem 1.2 Let X1, . . . , XN be independent random vectors in Rn satis-
fying hypothesis H(φ) with φ(t) = tp for some p ∈ (4, 8]. Let ε ∈ (0, 1) and
γ = p− 4− 2ε > 0. Then

S ≤ C

((
M2

n

)( n
N

)
+ C(p, ε)

( n
N

)γ/p)
,

with probability larger than 1− 8e−n − 2ε−p/2 max{N−3/2, n−(p/4−1)}.

In particular, if N is proportional to n and M2/n is bounded by a constant
with high probability, which is the case for large classes of random vectors,
then with high probability

S ≤ C (n/N)γ/p .

Let X have i.i.d. coordinates distributed as a centered random variable
with finite p-th moment. Then by Rosenthal’s inequality ([27], see also [16]
and Lemma 6.3 below), X satisfies hypothesis H(φ) with φ(t) = tp. Let X1,
..., XN be independent random vectors distributed as X. It is known ([7],
[28], see also [21] for a quantitative version) that when N is proportional
to n and in the absence of fourth moment, M2/n → ∞ as n → ∞. Hence,
concerning KLS question, an upper bound for S involving M2/n is interesting
only when p ≥ 4 and therefore the only case left open is the case p = 4.
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The main novelty of our proof is a delicate analysis of behavior of norms
of submatrices, namely quantities Ak and Bk, k ≤ N , defined in (5) below.
This analysis is done in Theorem 2.1, which is in the heart of the technical
part of the paper and it will be presented in the next section. The estimates
for Bk are responsible for RIP, Theorem 1.1, while the estimates for Ak are
responsible for KLS problem, Theorem 1.2.

As usual in this paper C, C0, C1, ..., c, c0, c1, ... always denote absolute
positive constants whose values may vary from line to line.

The paper is organized as follows. In Section 2, we formulate the main
technical result. For the reader convenience, we postpone its proof till Sec-
tion 5. In Section 3, we discuss the results on RIP. The fully detailed formu-
lation of the main result in this direction is Theorem 3.1, while Theorem 1.1
is its very simplified corollary. In Section 4, we prove Theorem 1.2 as a conse-
quence of Theorem 4.4. The case p > 8 and the exponential cases are proved
in Theorem 4.6 using the same argument. Symmetrization and formulas for
sums of the k smallest order statistics of independent non-negative random
variables with heavy tails allow to reduce the problem on hand to estimates
for Ak. In the last Section 6, we discuss optimality of the results.

An earlier version of the main results of this paper was announced in [14].

Acknowledgment. A part of this research was performed while the authors
were visiting at several universities. Namely, the first named author visited
University of Alberta at Edmonton in April 2013 and the second and the
forth named author visited University Paris-Est at Paris in June 2013 and
June 2014. The authors would like to thank all these universities for their
support and hospitality.

2 Norms of submatrices

We start with a few general preliminaries and notations. We denote by Bn
2

and Sn−1 the standard unit Euclidean ball and the unit sphere in Rn and by
| · | and 〈·, ·〉 the corresponding Euclidean norm and inner product. Given
a set E ⊂ {1, ..., N}, |E| denotes its cardinality and BE

2 denotes the unit
Euclidean ball in RE, with the convention B∅2 = {0}.

A standard volume argument implies that for every integer n and for every
ε ∈ (0, 1) there exists an ε-net Λ ⊂ Bn

2 of Bn
2 of cardinality not exceeding
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(1 + 2/ε)n; that is, for every x ∈ Bn
2 , miny∈Λ |x − y| < ε. In particular, if

ε ≤ 1/2 then the cardinality of Λ is not larger than (2.5/ε)n.

By M we denote the class of increasing functions φ : [0,∞) → [0,∞)
such that the function lnφ (1/

√
x) is convex on (0,∞). The examples of

such functions considered in this paper are φ(x) = xp for some p > 0 and
φ(x) = (1/2) exp(xα) for some α > 0.

Recall that the hypothesis H(φ) has been defined in the introduction by
(1). Note that this hypothesis is satisfied if

sup
a∈Sn−1

Eφ(| 〈X, a〉 |) ≤ 1.

For k ≤ N and random vectors X1, ..., XN in Rn we define Ak and Bk by

Ak := sup
a∈SN−1

|supp(a)|≤k

∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ , B2
k := sup

a∈SN−1

|supp(a)|≤k

∣∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣
2

−
N∑
i=1

a2
i |Xi|2

∣∣∣∣∣∣ . (5)

We would like to note that Ak is supremum of norms of submatrices consisting
of k columns of A, while Bk is related to a concentration.

Recall also a notation from the introduction M = maxi≤N |Xi|.
We formulate now the main technical result, Theorem 2.1, which is the

key result for both bounds for Ak and for Bk. We postpone its proof to
Section 5.

Theorem 2.1 Let X1, . . . , XN be independent random vectors in Rn satis-
fying hypothesis H(φ) for some φ. Let p > 4, σ ∈ (2, p/2), α ∈ (0, 2], t > 0,
and λ ≥ 1. For k ≤ N we define M1, β and Cφ in two cases.
Case 1. φ(x) = xp. We assume that λ ≤ p and we let Cφ = e4,

M1 := C1(σ, λ, p)
√
k

(
N

k

)σ/p
and β := C2(σ, λ)N−λ + C3(σ, λ)

N2

tp
,

where

C1(σ, λ, p) = 32 e4

√
σ + λ

1 + λ/2

(
2p

p− 2σ

)1+2σ/p(
σ + λ

σ − 2

)2σ/p

(20e)σ/p,

C2(σ, λ) :=

(
2(σ + λ)

5e(σ − 2)

)λ
1

2λ− 1
and C3(σ, λ) :=

(σ + λ)p

4(2(σ − 2))p
.
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Case 2. φ(x) = (1/2) exp(xα). We assume that λ ≥ 2 and we let Cφ =
C1/α, where C is an absolute positive constant,

M1 := (Cλ)1/α
√
k

(
ln

2N

k
+

1

α

)1/α

and

β :=
1

(10N)λ
exp

(
− λkα/2

(3.5 ln(2k))2α

)
+

N2

2 exp((2t)α)
.

In both cases we also assume that β < 1/32. Then with probability at least
1−
√
β one has

Ak ≤ (1− 4
√
β)−1

(
M + 2

√
Cφ tM +M1

)
and

B2
k ≤ (1− 4

√
β)−2

(
4
√
βM2 + (8Cφ t+M1)M + 2M2

1

)
.

We would like to emphasize that Ak and Bk are of different nature. In
particular, Theorem 2.1 in the case φ(t) = tp has to be applied with different
choices of the parameter σ. We summarize those choices in the following
remark.

Remark. In the case φ(x) = xp we will use the following two choices for σ:
1. Choosing σ = p/4 and assuming p > 8 we get

M1 ≤ C

√
p

λ

√
p

p− 8

√
k

(
N

k

)1/4

and

β ≤
(

2(p+ 4λ)

5eN(p− 8)

)λ
1

2λ− 1
+
N2(p+ 4λ)p

4(2t(p− 8))p
.

2. Choosing σ = 2 + ε with ε ≤ min{1, (p− 4)/4}, we get

M1 ≤ C

(
p

p− 4

)1+(4+2ε)/p(
λ

ε

)2(2+ε)/p √
k

(
N

k

)(2+ε)/p

and

β =

(
2(3 + λ)

5eεN

)λ
1

2λ− 1
+
N2(3 + λ)p

4(2εt)p
.
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3 Restricted Isometry Property

We need more definitions and notations.
Let T be an n×N matrix and let 1 ≤ m ≤ N . The isometry constant of

T is defined as the smallest number δm = δm(T ) so that

(1− δm)|z|2 ≤ |Tz|2 ≤ (1 + δm)|z|2 (6)

holds for all vectors z ∈ RN with |supp(z)| ≤ m. For m = 0, we put δ0(T ) =
0. Let δ ∈ (0, 1). The matrix T is said to satisfy the Restricted Isometry
Property of order m with parameter δ, in short RIPm(δ), if 0 ≤ δm(T ) ≤ δ.

Recall that a vector z ∈ RN is called m-sparse if |supp(z)| ≤ m. The
subset of m-sparse unit vectors in RN is denoted by

Um = Um(RN) := {z ∈ RN : |z| = 1, |supp(z)| ≤ m}.

Let X1, ..., XN be random vectors in Rn and let A be the n×N matrix
whose columns are the Xi’s. By the definition of Bm (see (5)) we clearly have

max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ = δ1

(
A√
n

)
≤ δm

(
A√
n

)
= sup

z∈Um

∣∣∣∣ |Az|2n
− 1

∣∣∣∣
≤ B2

m

n
+ max

i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ . (7)

Thus, in order to have a good bound on δm (A/
√
n) we require a strong

concentration of each |Xi| around
√
n and we need to estimate Bm.

To control the concentration of |Xi| we consider the function P (θ), defined
in the introduction by (2). Note that this function estimates the concentra-
tion of the maximum. Therefore, when it is small, we have much better
concentration of each |Xi| around

√
n.

We are now ready to state the main result about RIP. Theorem 1.1,
announced in the introduction, is a very simplified form of it.

Theorem 3.1 Let 1 ≤ n ≤ N . Let X1,. . . , XN be random vectors in Rn

satisfying hypothesis H(φ) for some φ ∈ M and let P (·) be as in (2). Let
θ ∈ (0, 1). Assume that φ satisfies one of the two cases.
Case 1. Let p > 4 and φ(x) = xp. Let ε ≤ min{1, (p− 4)/4}. Assume that

28/(ε θ) ≤ N ≤ c θ (c ε θ)p/2 np/4

9



and set

m =

[
C(θ, ε, p)n

(
N

n

)−2(2+ε)/(p−4−2ε)
]

and β =
4

3e2 ε2N2
+

5pN2

4(2c ε θ)p np/2
,

where

C(θ, ε, p) = c

(
p− 4

p

)2(p+4+2ε)/(p−4−2ε)

ε4(2+ε)/(p−4−2ε) θ2p/(p−4−2ε), (8)

c and C are absolute positive constants.

Case 2. Let α ∈ (0, 2] and φ(x) = (1/2) exp(xα). Assume that

max
{

21/α, 4/θ
}
≤ N ≤ c θ exp

(
(1/2)

(
c θ
√
n
)α)

and set
m =

[
C−2/α θ2 n

(
ln(C2/αN/(θ2 n))

)−2/α
]

and

β =
1

100N2
exp

(
−2mα/2

(3.5 ln(2m))2α

)
+
N2

2
exp

(
−c
(
θ
√
n
)α)

,

where c and C are absolute positive constants.
Then in both cases the matrix A/

√
n has RIP of order m satisfying

P
(
δm(A/

√
n) ≤ θ

)
≥ 1−

√
β − P (θ/2).

Remarks. 1. Note that for instance in case 1, the constraintN ≤ c(θ, ε, p)np/4

is not important because for N � np/4 one has

m =

[
C(θ, ε, p)n

(
N

n

)−2(2+ε)/(p−4−2ε)
]

= 0.

A similar remark is valid in the second case.
2. In most applications P (θ) → 0 very fast as n,N → ∞. For example,
for so-called isotropic log-concave random vectors it follows from results of
Paouris ([25, 26], see also [17, 15] or Lemma 3.3 of [4]). As another exam-
ple consider the model when Xi’s are i.i.d. and moreover the coordinates of
X1 are i.i.d. random variables distributed as a random variable ξ. In the
case when ξ is of variance one and has finite p-th moment, p > 4, then by
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Rosenthal’s inequality P (θ) is well bounded (for a precise bound see Corol-
lary 6.4 below, see also Proposition 1.3 of [29]). Another case is when ξ is
the Weibull random variable of variance one, that is consider ξ0 such that
P (|ξ0| > t) = exp (−tα) for α ∈ (0, 2] and let ξ = ξ0/

√
Eξ2

0 . By Lemma 3.4
from [4] (see also Theorem 1.2.8 in [11]), P (θ) satisfies (34) below.
3. Taking ε in the Case 1 of order (p− 4)2/ ln(N/n) and assuming that it
satisfies the condition of the theorem, we observe that in Case 1

m =

[
C(θ, p)n

(
N

n

)−4/(p−4) (
ln
N

n

)−8/(p−4)
]
.

Proof. We first pass to the subset Ω0 of our initial probability space where

max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≤ θ/2.

Note that by (2) the probability of this event is at least 1 − P (θ/2) and if
this event occurs then we also have

max
i≤N
|Xi| ≤ 3

√
n/2.

We will apply Theorem 2.1 with k = m, t = θ
√
n/(100Cφ), where Cφ is

the constant from Theorem 2.1. Additionally we assume that β ≤ 2−9θ2 and
M1 ≤ t. Then with probability at least 1−

√
β − P (θ/2) we have

B2
m ≤ (16

√
β + θ/4)n ≤ θ n/2.

Together with (7) this proves δm(A/
√
n) ≤ θ. Thus we only need to check

when the estimates for β and M1 are satisfied.

Case 1. φ(x) = xp. We start by proving the estimate for M1. We let
σ = 2 + ε, ε ≤ min{1, (p− 4)/4} and λ = 2. Then by Theorem 2.1 (see also
the Remark following it), for some absolute constant C we have

M1 ≤ C

(
p

p− 4

)1+(4+2ε)/p(
1

ε

)2(2+ε)/p √
m

(
N

m

)(2+ε)/p

.

Therefore the estimate M1 ≤ c θ
√
n with c = 1/(100e4) is satisfied provided

that

m =

[
C(θ, ε, p)n

(
N

n

)−2(2+ε)/(p−4−2ε)
]
,
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with C(θ, ε, p) defined in (8) and the absolute constants properly adjusted.
Now we estimate the probability. From Theorem 2.1 (and the Remark

following it), with our choice of t and λ we have

β ≤ 4

3e2 ε2N2
+

5pN2

4(2c ε θ)p np/2
≤ 2−9θ2

provided that 28/(ε θ) ≤ N ≤ 2−4θ (0.4c ε θ)p/2 np/4. This completes the
proof of the first case.

Case 2. φ(x) = (1/2) exp(xα). As in the first case we start with the
condition M1 ≤ t. We choose λ = 4. Note that N/m ≥ 21/α as N ≥ 21/αn.
Therefore for some absolute constant C,

M1 ≤
√
m (C ln(2N/m))1/α .

Therefore the condition M1 ≤ t is satisfied provided that

m ≤ C
−2/α
1 θ2 n

(
ln(C

2/α
1 N/(θ2 n))

)−2/α

for an absolute positive constant C1. This justifies the choice of m.
Now we estimate the probability. From Theorem 2.1 with our choice of t

and λ we have

β ≤ 1

100N2
exp

(
−2mα/2

(3.5 ln(2m))2α

)
+
N2

2
exp

(
−c
(
θ
√
n
)α)

,

provided that 4/θ ≤ N ≤ 2−5θ exp
(
c (θ
√
n)

α)
. This completes the proof. 2

4 Approximating the covariance matrix

The following technical lemma emphasizes the role of the parameter Ak in
estimates of the distance between the covariance matrix and the empirical
one. This role was first recognized in [8] and [2]. Other versions of the lemma
appeared in [4, 5].

We use below the symmetrization method as in [24]. For a sequence
of real numbers (si)i we denote by (s∗i )i a non-increasing rearrangement of
(|si|)i.
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Lemma 4.1 Let 1 ≤ k < N and X1, . . . , XN be independent vectors in
Rn. Let p ≥ 2, α ∈ (0, 2]. Let φ be either φ(t) = tp in which case we set
Cφ = 8N2/min(p,4) and assume

∀1 ≤ i ≤ N ∀a ∈ Sn−1 E |〈Xi, a〉|p ≤ 1,

or φ(t) = (1/2) exp(tα) in which case we assume that Xi’s satisfy hypothesis
H(φ) and set Cφ = 8

√
CαN , where Cα = (2/α) Γ(5/α), Γ(·) is the Gamma

function. Then, for every A,Z > 0,

sup
a∈Sn−1

∣∣∣∣∣
N∑
i=1

(〈Xi, a〉2 − E〈Xi, a〉2)

∣∣∣∣∣ ≤ 2A2 + 6
√
nZ + Cφ

with probability larger than

1− 4 exp(−n)− 4P(Ak > A)− 4× 9n sup
a∈Sn−1

P

((∑
i>k

(〈Xi, a〉∗)4
)1/2

> Z

)
.

The term involving Z in the upper bound will be bounded later using
general estimates in Lemma 4.3. Thus Lemma 4.1 clearly stresses the fact
that in order to estimate the distance between the covariance matrix and the
empirical one, it will remain to estimate Ak, to get A.

Proof: Let Λ ⊂ Rn be an (1/4)-net of the unit Euclidean ball in the Eu-
clidean metric of cardinality not greater than 9n. Let (εi)1≤i≤N be i.i.d. ±1
Bernoulli random variables of parameter 1/2. By Hoeffding’s inequality, for
every t > 0 and every (si)1≤i≤N ∈ RN ,

P(εi)

(∣∣∣ N∑
i=1

εisi

∣∣∣ ≥ t(
N∑
i=1

|si|2)1/2

)
≤ 2 exp(−t2/2).

Fix an arbitrary 1 ≤ k < N . For every (si)1≤i≤N ∈ RN
+ there exists a

permutation π of {1, . . . , N} such that

∣∣∣ N∑
i=1

εisi

∣∣∣ ≤ k∑
i=1

s∗i +
∣∣∣ N∑
i=k+1

επ(i)s
∗
i

∣∣∣.
Also, it is easy to check using (5) that for any a ∈ Sn−1 and any I ⊂

{1, . . . , N} with |I| ≤ k,
∑

i∈I〈Xi, a〉2 ≤ A2
k,

13



Thus, for every a ∈ Sn−1,

P(εi)

(∣∣∣ N∑
i=1

εi〈Xi, a〉2
∣∣∣ ≤ A2

k + t
( N∑
i=k+1

(〈Xi, a〉∗)4
)1/2

)
≥ 1− 2 exp(−t2/2).

Using a union bound argument indexed by Λ and Lemma 5.3 (below) we get
that

P(εi)

(
sup

a∈Sn−1

∣∣∣ N∑
i=1

εi〈Xi, a〉2
∣∣∣ ≤ 2

[
A2
k + t sup

a∈Λ

( N∑
i=k+1

(〈Xi, a〉∗)4
)1/2])

≥ 1− 2× 9n exp(−t2/2).

Using again a union bound argument and the triangle inequality to estimate
the probability that the (Xi) satisfy

sup
a∈Λ

( N∑
i=k+1

(〈Xi, a〉∗)4
)1/2

> Z,

and choosing t = 3
√
n (so that 2 · 9n exp(−t2/2) ≤ e−n) we get that

sup
a∈Sn−1

∣∣∣ N∑
i=1

εi〈Xi, a〉2
∣∣∣ ≤ 2A2 + 6

√
nZ

with probability larger than

1− e−n − P(Ak > A)− 9n sup
a∈Sn−1

P

(( N∑
i=k+1

(〈Xi, a〉∗)4
)1/2

> Z

)
.

Now we transfer the result from Bernoulli random variables to centered
random variables (see [20], Section 6.1). By the triangle inequality, for every
s, t > 0, one has

m(s)P

(
sup

a∈Sn−1

∣∣∣ N∑
i=1

(
〈Xi, a〉2 − E〈Xi, a〉2

)∣∣∣ > s+ t

)

≤ 2P

(
sup

a∈Sn−1

∣∣∣ N∑
i=1

εi〈Xi, a〉2
∣∣∣ > t

)

14



where m(s) = infa∈Sn−1 P
(∣∣∣∑N

i=1

(
〈Xi, a〉2 − E〈Xi, a〉2

)∣∣∣ ≤ s
)

.

To conclude the proof it is enough to find s so that m(s) ≥ 1/2. To
this end we will use a general Lemma 4.2 (below). First consider φ(t) = tp.
For a ∈ Sn−1, set Zi = |〈Xi, a〉|2 and q = p/2. Then by Lemma 4.2 we
have m(s) ≥ 1/2 for s = 4N1/r and r = min(p/2, 2). Now consider φ(t) =
(1/2) exp(tα). Then for every a ∈ Sn−1 and every i ≤ N using hypothesis
H(φ) we have

E|〈Xi, a〉|4 ≤ 2

∫ ∞
0

t4 exp(−tα) dt =
2

α
Γ

(
5

α

)
:= Cα.

Given a ∈ Sn−1, set Zi = |〈Xi, a〉|2/
√
Cα. Then EZ2

i ≤ 1. Applying again
Lemma 4.2 (with q = 2), we observe that m(s) ≥ 1/2 for s = 4

√
CαN . This

completes the proof. 2

It remains to prove the following general lemma. For convenience of the
argument above, we formulate this lemma using two powers q and r rather
than just one.

Lemma 4.2 Let q ≥ 1 and Z1, . . . , ZN be independent non-negative random
variables satisfying

∀1 ≤ i ≤ N EZq
i ≤ 1.

Let r = min(q, 2), then

∀z ≥ 4N1/r P

(∣∣∣ N∑
i=1

(
Zi − EZi

)∣∣∣ ≤ z

)
≥ 1

2
.

Proof: By definition of r, we have for all i = 1, . . . , N, EZr
i ≤ 1. Since the

Zi’s are independent, we deduce by a classical symmetrization argument that

E
∣∣∣ N∑
i=1

(
Zi − EZi

)∣∣∣ ≤ 2EE(εi)

∣∣∣ N∑
i=1

εiZi

∣∣∣ ≤ 2E

(
N∑
i=1

Z2
i

)1/2

≤ 2E

(
N∑
i=1

Zr
i

)1/r

since r ∈ [1, 2]. From EZr
i ≤ 1, we get that

E
∣∣∣ N∑
i=1

(
Zi − EZi

)∣∣∣ ≤ 2E

(
N∑
i=1

Zr
i

)1/r

≤ 2

(
N∑
i=1

EZr
i

)1/r

≤ 2N1/r.
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By Markov’s inequality we get

P

(∣∣∣ N∑
i=1

(
Zi − EZi

)∣∣∣ ≥ 4N1/r

)
≤ 1

2
,

and since z ≥ 4N1/r, this implies the required estimate. 2

The following lemma is standard (cf. Lemma 5.8 in [20], which however
contains a misprint).

Lemma 4.3 Let q > 0 and let Z1, . . . , ZN be independent non-negative ran-
dom variables satisfying

∀1 ≤ i ≤ N ∀t ≥ 1 P(Zi ≥ t) ≤ 1/tq.

Then, for every s > 1, with probability larger than 1− s−k, one has

N∑
i=k

Z∗i ≤


(2es)1/q

1−q N1/qk1−1/q if 0 < q < 1

2esN ln
(
eN
k

)
if q = 1

12q(es)1/q

q−1
N if q > 1.

Proof: Assume first that 0 < q ≤ 1. It is clear that

∀1 ≤ i ≤ N P(Z∗i > t) ≤
(
N

i

)
t−iq ≤ (Ne/itq)i,

where we used the inequality
(
N
i

)
≤ (Ne/i)i. Thus if eNt−q ≤ 1, then

P(sup
i≥k

i1/qZ∗i > t) ≤
∑
i≥k

(Ne/tq)i =
(eN
tq

)k
(1− eNt−q)−1.

Therefore if eNt−q ≤ 1/2, then P(supi≥k i
1/qZ∗i > t) ≤ (2eNt−q)k. Since

the inequality is trivially true if eNt−q ≥ 1/2, it is proved for every t > 0.
Therefore for q < 1 we have

N∑
i=k

Z∗i ≤ t

∞∑
i=k

i−1/q ≤ t

(
k−1/q − k1−1/q

1− 1/q

)
≤ t

1− q
k1−1/q

16



with probability larger than 1 − (2eN/tq)k. Choosing t = (2esN)1/q, we
obtain the estimate in the case 0 < q < 1.

For q = 1 we have

N∑
i=k

Z∗i ≤ t

N∑
i=k

i−1 ≤ t

(
1

k
+ ln(N/k)

)
≤ t ln(eN/k)

with probability larger than 1 − (2eN/t)k. To obtain the desire estimate
choose t = 2esN .

Now assume that q > 1. Set ` = dlog2 ke. The same computation as
before for the scale (2i/q) instead of (i1/q) gives that

P(sup
i≥`

2i/qZ∗2i > t) ≤
∑
i≥`

(Net−q)2i ≤
(

2eNt−q
)2`

.

Note also that
P(k1/qZ∗k > t) ≤ (Net−q)k.

Thus

N∑
i=k

Z∗i ≤ kZ∗k +

dlog2Ne∑
i=`

2iZ∗2i ≤ t
(
k1−1/q + (4N)1−1/q/(21−1/q − 1)

)
≤ t

(
k1−1/q +

2q

1− q
(4N)1−1/q

)
≤ t

3q

1− q
(4N)1−1/q

with probability larger than (Net−q)k+(2Net−q)k. Thus, taking t = (4esN)1/q,
we obtain

P

(
N∑
i=k

Z∗i ≤
12q(es)1/q

q − 1
N

)
≥ 1− s−k.

2

We are now ready to tackle the problem of approximating the covariance
matrix by the empirical covariance matrices, under hypothesis H(φ) with
φ(t) = tp. As our proof works for all p > 4, we also include the case p > 8
originally solved in [24] (under additional assumption on maxi |Xi|). For
clarity, we split the result into two theorems. The case 4 < p ≤ 8 has been
stated as Theorem 1.2 in the Introduction.
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Before we state our result, let us remark that p > 2 is a necessary con-
dition. Indeed, let (ei)1≤i≤n be an orthonormal basis of Rn and let Z be
a random vector such that Z =

√
nei with probability 1/n. The covari-

ance matrix of Z is the identity I. Let A be an n × N random matrix
with independent columns distributed as Z. Note that if ‖ 1

N
AA> − I‖ < 1

with some probability, then AA> is invertible with the same probability. It
is known (coupon collector’s problem) that N ∼ n log n is needed to have
{Zi : i ≤ N} = {

√
nei : i ≤ n} with probability, say, 1/2. Thus for vector

Z, the hypothesis H(φ), φ(t) = t2 is satisfied but N ∼ n log n is needed for
the covariance matrix to be well approximated by the empirical covariance
matrices with probability 1/2.

Theorem 4.4 Let 4 < p ≤ 8 and φ(t) = tp. Let X1, . . . , XN be independent
random vectors in Rn satisfying hypothesis H(φ). Let ε ≤ min{1, (p− 4)/4}
and γ = p− 4− 2ε. Then with probability larger than

1− 8e−n − 2ε−p/2 max
{
N−3/2, n−(p/4−1)

}
one has

sup
a∈Sn−1

∣∣∣∣∣ 1

N

N∑
i=1

(〈Xi, a〉2 − E〈Xi, a〉2)

∣∣∣∣∣ ≤ C

(
1

N
max
i≤N
|Xi|2 + C(p, ε)

( n
N

)γ/p)
,

where
C(p, ε) = (p− 4)−1/2 ε−4(2+ε)/p.

and C is an absolute constant.

An immediate consequence of this theorem is the following corollary.

Corollary 4.5 Under assumptions of Theorem 4.6, assuming additionally
that maxi |Xi|2 ≤ Cnγ/pN1−γ/p with high probability, we have with high prob-
ability

sup
a∈Sn−1

∣∣∣∣∣ 1

N

N∑
i=1

(〈Xi, a〉2 − E〈Xi, a〉2)

∣∣∣∣∣ ≤ C1C(p, ε)
( n
N

)γ/p
,

where C and C1 are absolute positive constants.
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Theorem 4.6 There exists a universal positive constant C such that the
following holds. Let p > 8, α ∈ (0, 2]. Let φ and Cφ be either φ(t) = tp and

Cφ = C or φ(t) = (1/2) exp(tα) and Cφ = (C/α)2.5/α. Let X1, . . . , XN be
independent random vectors in Rn satisfying hypothesis H(φ). In the case
φ(t) = tp we also define

p0 = 8e−n + 2

(
3p− 8

6(p− 8)

)p/2
N−(p−8)/8 n−p/8

and in the case φ(t) = (1/2) exp(tα), we assume N ≥ (4/α)8/α and define

p0 = 8e−n +
1

(10N)4
exp

(
4nα/2

(3.5 ln(2n))2α

)
+

N2

2 exp((2nN)α/4)
.

Then in both cases with probability larger than 1− p0 one has

sup
a∈Sn−1

∣∣∣∣∣ 1

N

N∑
i=1

(〈Xi, a〉2 − E〈Xi, a〉2)

∣∣∣∣∣ ≤ C

N
max
i≤N
|Xi|2 + Cφ

√
n

N
.

As our argument works in all cases we prove both theorems together.

Proof of Theorems 4.4 and 4.6. We first consider the case φ = tp. Note
that in this case

E |〈Xi, a〉|4 ≤ 1 +

∫ ∞
1

P
(
|Xi|4 > t

)
dt ≤ 1 +

∫ ∞
1

4s3−p ds =
p

p− 4
.

Thus, by Lemma 4.1 it is enough to estimate A2 +
√
nZ +

√
p/(p− 4)

√
N

and the corresponding probabilities. We choose k = n.
In the case φ = tp we apply Lemma 4.3 with Zi = | 〈Xi, a〉 |4, i ≤ N ,

q = p/4 > 1 and s = 9e. It gives

P

(∑
i>k

(〈Xi, a〉∗)4

)1/2

> Z

 ≤ (9e)−n,

for

Z =

√
12q

q − 1
(es)1/2q

√
N =

√
12p

p− 4
(3e)4/p

√
N.

Now we estimate An, using Theorem 2.1.

19



Case 1: 4 < p ≤ 8 (Theorem 4.4). We apply Theorem 2.1 (and the
Remark following it), with σ = 2 + ε, where ε < (p − 4)/4, λ = 3 and
t = 3N2/pnδ for δ = 1/2− 2/p. Then

M1 ≤ C(p, ε)
√
n (N/n)(2+ε)/p,

where

C0(p, ε) = C

(
1

p− 4

)(p−4−2ε)/p (
1

ε

)2(2+ε)/p

and

β ≤ 1

5

(
12

5eεN

)3

+
1

4(p− 4)pnδp
≤ ε−p max{N−3, n−δp} ≤ 1/64

provided that n is large enough. Then, using δ = 1/2− 2/p, we obtain

A2
n ≤ C

(
max
i≤N
|Xi|2 +N2/pnδ max

i≤N
|Xi|+ C2

0(p, ε)n (N/n)2(2+ε)/p

)

≤ 2C

(
max
i≤N
|Xi|2 + C2

0(p, ε)n (N/n)2(2+ε)/p

)
.

Combining all estimates and noticing that (p− 4)−γ < 2, we obtain that the
desired estimate holds with probability

1− 8e−n − 2ε−p/2 max{N−3/2, n−(p/4−1)}.

Case 2: p > 8 (Theorem 4.6). In this case we apply Theorem 2.1 (see
also the Remark following it), with σ = p/4, λ = (p − 4)/2, t = 3(nN)1/4.
Then M1 ≤ C

√
n(N/n)1/4 and

β ≤
(

2(3p− 8)

5e(p− 8)N

)(p−4)/2
1

p− 5
+

(3p− 8)p

4(6(p− 8))pN (p−8)/4np/4

≤
(

3p− 8

6(p− 8)

)p
N−(p−8)/4 n−p/4 ≤ 1/64,

provided that N is large enough. Thus with probability at least 1−
√
β we

have

A2
n ≤ C

(
max
i≤N
|Xi|2 + (nN)1/4 max

i≤N
|Xi|+

√
nN

)
≤ 2C

(
max
i≤N
|Xi|2 +

√
nN

)
.
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Combining all estimates we obtain that the desired estimate holds with prob-
ability

1− 8e−n − 2

(
3p− 8

6(p− 8)

)p/2
N−(p−8)/8 n−p/8.

Case 3: φ(t) = (1/2) exp(tα) (Theorem 4.6). As in Case 2 we apply
Lemma 4.1. It implies that it is enough to estimate A2 +

√
nZ +

√
C(α)N ,

with C(α) from Lemma 4.1, and the corresponding probabilities. A direct
calculations show that in this case we have for C ′α = (4/α)1/α and t > 1,

P
(

(|X|/C ′α)
4
> t
)
≤ 2 exp(C ′α) tα/4 ≤ 1

t2
.

We apply Lemma 4.3 with Zi = | 〈Xi, a〉 |4/
√
C ′α, i ≤ N , q = 2 and s = 9e.

It gives

P

(∑
i>k

(〈Xi, a〉∗)4

)1/2

> Z

 ≤ (9e)−n,

for
Z = (C ′α)

1/4
6
√

6e
√
N.

To estimate An we use Theorem 2.1 with t = (nN)1/4 and

λ = 10 (N/n)α/4 min
{

1, (α ln(2N/n))−1} .
Note that

max
{

4, 10 (N/n)α/4 (ln(2N/n))−1
}
≤ λ ≤ 10 (N/n)α/4 .

Then for absolute positive constants C, C ′,

M1 ≤
√
n (Cλ)1/α

(
ln

2N

n
+

1

α

)1/α

≤
(
C ′

α

)1/α

(nN)1/4

and

β ≤ 1

(10N)4
exp

(
4nα/2

(3.5 ln(2n))2α

)
+

N2

2 exp((2nN)α/4)
≤ 1/64,
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provided that N ≥ (4/α)8/α. Thus with probability at least 1−
√
β we have

A2
n ≤ C ′′ max

i≤N
|Xi|2 +

(
C ′′′

α

)2/α√
nN,

where C ′′ and C ′′′ are absolute positive constants. This together with the
estimate for Z completes the proof (note that C(α) ≤ C(2/α)5/α). 2

5 The proof of Theorem 2.1

In this section we prove the main technical result of this paper, Theorem 2.1,
which establishes upper bounds for norms of submatrices of random matrices
with independent columns. Recall that for 1 ≤ k ≤ N the parameters Ak
and Bk are defined by (5).

5.1 Bilinear forms of independent vectors

Let X1,... XN be independent random vectors and a ∈ RN . Given disjoint
sets T, S ⊂ {1, ..., N} we let

Q(a, T, S) =

∣∣∣∣∣
〈∑
i∈T

aiXi,
∑
j∈S

ajXj

〉∣∣∣∣∣ , (9)

with the convention that
∑

i∈∅ aiXi = 0.

The following two lemmas are in the spirit of Lemma 2.3 of [24].

Lemma 5.1 Let X1,... XN be independent random vectors in Rn. Let γ ∈
(1/2, 1), I ⊂ {1, ..., N}, and a ∈ RN . Let k ≥ |supp(a)|. Then there exists
ā ∈ RN such that supp(ā) ⊂ supp (a), |supp(ā)| ≤ γk, |ā| ≤ |a|, and

Q(a, I, Ic) ≤ Q(ā, I, Ic) + max

{
m+`−1∑
i=m

V ∗i ,
m+`−1∑
i=m

W ∗
i

}
,

where ` = d(1− γ)ke, m = d(γ − 1/2)ke, and

Vi =

〈
aiXi,

∑
j∈Ic

ajXj

〉
for i ∈ I,
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Wj =

〈∑
i∈I

aiXi, ajXj

〉
for j ∈ Ic.

Proof. Let E ⊂ {1, ..., N} be such that supp(a) ⊂ E and |E| = k. Every-
thing is clear when k = 0 or 1, because then Q(a, I, Ic) = 0. Thus we may
assume that k ≥ 2. Let F1 = E ∩ I and F2 = E ∩ Ic. First assume that
s := |F1| ≥ k/2. Note that (1 − γ)k ≤ k/2 ≤ s, so that ` ≤ s. Let J ⊂ F1

be a set with |J | = ` such that the set {|Vj| : j ∈ J} consists of ` smallest
values among the values {|Vi| : i ∈ F1}. (That is, J ⊂ F1 is such that |J | = `
and for all j ∈ J and i ∈ F1 \ J we have |Vi| ≥ |Vj|.) Now we let

F̄1 = F1 \ J and F̄2 = F2.

Define the vector ā ∈ RN by the conditions

ā|F̄1
= a|F̄1

, ā|J̄ = 0, ā|F̄2
= a|F̄2

.

Thus ā differs from a only on coordinates from J ; in particular its support
has cardinality less than or equal to |supp(a)| − |J | = s − ` ≤ k − ` = γk.
Moreover,

Q(a, I, Ic) =

∣∣∣∣∣
〈∑
i∈F1

aiXi,
∑
j∈F2

ajXj

〉∣∣∣∣∣
≤

∣∣∣∣∣
〈∑

i∈J

aiXi,
∑
j∈F2

ajXj

〉∣∣∣∣∣+

∣∣∣∣∣∣
〈 ∑
i∈F1\J

aiXi,
∑
j∈F2

ajXj

〉∣∣∣∣∣∣
=

∣∣∣∣∣∑
i∈J

〈
aiXi,

∑
j∈F2

ajXj

〉∣∣∣∣∣+Q(ā, I, Ic).

Then we have

Q(a, I, Ic) ≤ Q(ā, I, Ic) +
∑
i∈J

∣∣∣∣∣
〈
aiXi,

∑
j∈F2

ajXj

〉∣∣∣∣∣
≤ Q(ā, I, Ic) +

s∑
i=s−`+1

V ∗i ≤ Q(ā, I, Ic) +
m+`−1∑
i=m

V ∗i
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If |F1| < k/2 then |F2| ≥ k/2 and we proceed similarly interchanging the
role of F1 and F2 and obtaining

Q(a, I, Ic) ≤ Q(ā, I, Ic) +
m+`−1∑
i=m

W ∗
i .

2

Lemma 5.2 Let X1, · · · , XN be a sequence of random vectors in Rn satisfy-
ing the hypothesis H(φ) for some function φ ∈M. Let a ∈ RN with |a| = 1.
In the notation of Lemma 5.1, for every t > 0 one has

P

(
m+`−1∑
i=m

U∗i > tAk

)
≤ 2k

(
φ

(
t
√
m

`

))−m
≤ 2k

(
φ

(
t
√
γ0k

(1− γ)k + 1

))−γ0k
,

where {Ui}i denotes either {Vi}i or {Wi}i, and γ0 = γ − 1/2.

Remarks. 1. Taking φ(t) = tp for some p > 0, we obtain that if

P (| 〈Xi, a〉 | ≥ t) ≤ t−p (10)

then

P

(
m+`−1∑
i=m

U∗i > tAk

)
≤ 2k

(
t
√
m

`

)−mp
. (11)

Note that the condition (10) is satisfied if

sup
i≤N

sup
a∈Sn−1

E| 〈Xi, a〉 |p ≤ 1.

2. Taking φ = (1/2) exp(xα) for some α > 0, we obtain that if

P (| 〈Xi, a〉 | ≥ t) ≤ 2 exp(−tα) (12)

then

P

(
m+`−1∑
i=m

U∗i > tAk

)
≤ 2k+m exp

(
−m

(
t
√
m

`

)α)
. (13)

Note that the condition (12) is satisfied if

sup
i≤N

sup
a∈Sn−1

E exp (| 〈Xi, a〉 |α) ≤ 2.
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Proof. Without loss of generality assume that Ui = Vi for every i. Then

m+`−1∑
i=m

V ∗i ≤ `V ∗m.

Let F1 = supp(a) ∩ I and F2 = supp(a) ∩ Ic. Note that V ∗m > s means that
there exists a set F ⊂ F1 of cardinality m such that Vi > s for every i ∈ F
(if cardinality of F1 is smaller than m, the estimate for probability is trivial).
Since |F1| ≤ k, we obtain

P

(
m+`−1∑
i=m

V ∗i > tAk

)
≤ P (`V ∗m > tAk) ≤

(
k

m

)
max
F⊂F1
|F |=m

P
(
∀i ∈ F : |Vi| >

tAk
`

)
.

Denote Z :=
∑

j∈F2
ajXj. Since |a| ≤ 1 then |Z| ≤ Ak, and note that the

Xi’s, i ∈ F1 are independent of Z. Thus, conditioning on Z we obtain

P

(
m+`−1∑
i=m

V ∗i > tAk

)
≤ 2k max

F⊂F1
|F |=m

∏
i∈F

P
(
|ai|| 〈Xi, Z〉 | >

tAk
`

)

≤ 2k max
F⊂F1
|F |=m

∏
i∈F

(
φ

(
t

`|ai|

))−1

.

Now we show that for every s > 0,∏
i∈F

(
φ

(
s

|ai|

))−1

≤
(
φ
(
s
√
m
))−m

,

Indeed, this estimate is equivalent to

1

m

∑
i∈F

lnφ

(
s

|ai|

)
≥ lnφ

(
s
√
m
)
,

which holds by convexity of lnφ(1/
√
x), the facts that |a| ≤ 1 and |F | = m,

and since φ is increasing. Taking s = t/`, we obtain

P

(
m+`−1∑
i=m

V ∗i > tAk

)
≤
(
φ
(
t
√
m/`

))−m
.

Finally note that m = d(γ−1/2)ke ≥ γ0k and ` = d(1−γ)ke ≤ (1−γ)k+ 1.
Since φ is increasing, we obtain the last inequality, completing the proof. 2

An ε-net argument will be used in the following form.
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Lemma 5.3 Let m ≥ 1 be an integer and T be an m × m matrix. Let
ε ∈ (0, 1/2) and N ⊂ Bm

2 be a ε-net of Bm
2 (in the Euclidean metric). Then

sup
x∈Bm2

|〈Tx, x〉| ≤ (1− 2ε)−1 sup
y∈N
|〈Ty, y〉|.

Proof. Let S = T + T ∗. For any x, y ∈ Rm,

〈Sx, x〉 = 〈Sy, y〉+ 〈Sx, x− y〉+ 〈S(x− y), y〉.

Therefore |〈Sx, x〉| ≤ |〈Sy, y〉|+ 2|x− y|‖S‖. Since S is symmetric, we have

‖S‖ = sup
x∈Bm2

|〈Sx, x〉|.

Thus, if |x− y| ≤ ε, then

‖S‖ ≤ sup
y∈N
|〈Sy, y〉|+ 2ε‖S‖

and
sup
x∈Bm2

|〈Sx, x〉| ≤ (1− 2ε)−1 sup
y∈N
|〈Sy, y〉|.

Since T is a real matrix, then for every x ∈ Rm, 〈Sx, x〉 = 2〈Tx, x〉. This
concludes the proof. 2

5.2 Estimates for off-diagonal of bilinear forms

For 1 ≤ k ≤ N and I ⊂ {1, ..., N} we define Qk(I) by

Qk(I) = sup
E⊂{1,...,N}
|E|≤k

sup
a∈BE2

Q(a,E ∩ I, E ∩ Ic). (14)

Lemmas 5.1, 5.2 and 5.3 imply the following proposition.

Proposition 5.4 Let X1, · · · , XN be a sequence of random vectors in Rn

satisfying the hypothesis H(φ) for some function φ ∈ M. Let ε ∈ (0, 1/2),
2 ≤ k ≤ N , I ⊂ {1, ..., N}, γ ∈ (1/2, 1), and γ0 = γ − 1/2. Then for every
t > 0 one has

P
(
Qk(I) >

Q[γk](I) + tAk
1− 2ε

)
≤ exp

(
k

(
ln

5eN

kε
− γ0 lnφ

(
t
√
γ0k

(1− γ)k + 1

)))
.
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Moreover, letting M = maxi |Xi| one has, for all ` > 1 and t > 0,

P (Q`(I) > tM) ≤ N2

4φ(4t/`)
.

Proof. For every E ⊂ 1, ..., N with |E| = k let NE be an ε-net in BE
2 of

cardinality at most (2.5/ε)k. Let N denote the union of NE’s. Lemma 5.3
yields

Qk(I) ≤ (1− 2ε)−1 sup
E⊂{1,...,N}
|E|≤k

sup
a∈NE

Q(a,E ∩ I, E ∩ Ic).

Therefore, applying Lemmas 5.1 and 5.2, we observe that the event

Qk(I) ≤ (1− 2ε)−1

 sup
E⊂{1,...,N}
|E|≤γk

sup
a∈N

Q(a,E ∩ I, E ∩ Ic) + tAk


occurs with probability at least

1−
(
N

k

) (
2.5

ε

)k
2k
(
φ

(
t
√
γ0k

(1− γ)k + 1

))−γ0k
This implies the first estimate.

Now we prove the “moreover” part. For every E ⊂ {1, . . . , N} of cardi-
nality ` denote F1 = E ∩ I, F2 = E ∩ Ic, m = |F1| (so |F2| = ` −m). We
also denote

M0 := max
i∈I

max
j∈Ic
| 〈Xi, Xj〉 | and M1 := max

j∈Ic
|Xj|

Then for any a ∈ BE
2 we have∣∣∣∣∣

〈∑
i∈F1

aiXi,
∑
j∈F2

ajXj

〉∣∣∣∣∣ ≤
∣∣∣∣∣∑
i∈F1

ai
∑
j∈F2

aj

∣∣∣∣∣ M0

≤
√
m(`−m)

(∑
i∈F1

a2
i

)1/2 (∑
j∈F2

a2
j

)1/2

M0 ≤
`

2

M0

2
.

Therefore, by the union bound,

P (Q`(I) > tM1) ≤ P (M0 > 4tM1/`)

≤
∑
i∈I

∑
j∈Ic

P (| 〈Xi, Xj〉 | > 4tM1/`) .
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Finally, using the fact that Xi is independent of Xj for i 6= j, |Xj| ≤M1 for
every j ∈ Ic, and using the tail behavior of variables 〈Xi, z〉, we obtain

P (Q`(I) > tM) ≤ P (Q`(I) > tM1) ≤ |I| |I
c|

φ(4t/`)
≤ N2

4φ(4t/`)
.

2

Proposition 5.5 Let 1 ≤ k ≤ N . Let X1, · · · , XN be random vectors in Rn

satisfying H(φ) for some function φ ∈M. Let t > 0, λ ≥ 1.

Case 1. Let p > 4 and φ(x) = xp. Let σ ∈ (2, p/2). Then

Qk(I) ≤ e4

(
tmax
i≤N
|Xi|+ C2(σ, λ, p)

√
k

(
5eN

k

)σ/p
Ak

)

occurs with probability at least

1−
(

2(σ + λ)

5eN(σ − 2)

)λ
1

2λ− 1
− N2(σ + λ)p

4(2t(σ − 2))p
(15)

and

C2(σ, λ, p) = 8

√
σ + λ

1 + λ/2

(
2p

p− 2σ

)1+2σ/p(
2(σ + λ)

σ − 2

)2σ/p

.

Case 2. Assume that φ(x) = (1/2) exp(xα) for some α > 0. Then for
every t > 0,

Qk(I) ≤ C1/α

(
tmax
i≤N
|Xi|+ (Cλ)1/α

√
k

((
ln

20eN

k

)1/α

+

(
1

α

)1/α
)
Ak

)

with probability at least

1− 1

(10N)λ
exp

(
− λkα/2

(3.5 ln(2k))2α

)
− N2

2 exp((2t)α)
.
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Proof. Let γ ∈ (1/2, 1) to be chosen later. For integers s ≥ 0 denote k0 = k,
ks+1 = [γks]. Clearly, the sequence is strictly decreasing whenever ks ≥ 1
and ks ≤ γsk. Assume that k ≥ 1/(1−γ). Define m to be the largest integer
m ≥ 1 such that km−1 ≥ 1/(1− γ). Note that γkm−1 ≥ 1. Therefore

1 ≤ km <
1

1− γ
≤ km−1. (16)

By Proposition 5.4 we observe that for every positive ts and εs ∈ (0, 1/2),
0 ≤ s ≤ m, the event

Qk(I) ≤

(
Qkm(I) +

m−1∑
s=0

tsAks

)
m−1∏
s=0

(1− 2εs)
−1

occurs with probability at least

1− 2
m−1∑
s=0

exp

(
ks

(
ln

5eN

ksεs
− γ0 lnφ

(
ts
√
γ0k

(1− γ)k + 1

)))
. (17)

Let ε > 0 and a positive decreasing sequence (εs)s be chosen later and set

ts =
(1− γ)ks + 1√

γ0ks
φ−1

((
5eN

ksεs

)(1+ε)/γ0
)
,

where φ−1(s) = min{t ≥ 0 : φ(t) ≥ s}.
We start estimating Qk(I). Since ln(1−x) ≥ −2x on (0, 3/4], we observe

that for εs < 3/8,
m−1∑
s=0

ln(1− 2εs) ≥
m−1∑
s=0

−4εs

so that
m−1∏
s=0

(1− 2εs)
−1 ≤ exp

(
4
m−1∑
s=0

εs

)
Note that

m−1∑
s=0

tsAks ≤ Ak

m−1∑
s=0

ts.
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Thus by (17) and by our choice of ts,

Qk(I) ≤ exp

(
4
m−1∑
s=0

εs

) (
Qkm(I) + Ak

m−1∑
s=0

ts

)
(18)

with probability at least

1− 2
m−1∑
s=0

exp

(
−ks ε ln

5eN

ksεs

)
≥ 1− 2 exp

(
−km−1 ε ln

5eN

km−1

)m−1∑
s=0

εksεs .

Since km−1 ≥ 1/(1− γ), this probability is larger than

1− 2 exp

(
− ε

1− γ
ln (5e(1− γ)N)

)m−1∑
s=0

εksεs . (19)

Thus it is enough to choose appropriately εs and to estimate
∑m−1

s=0 ts, Qkm(I)
and

∑m−1
s=0 εksεs . We distinguish two cases for φ.

Case 1: φ(x) = xp. In this case we choose εs = (s+ 2)−2 so that

m−1∑
s=0

εksεs =
m−1∑
s=0

(s+ 2)−2ksε ≤
m−1∑
s=0

(s+ 2)−2km−1ε ≤ 1

2km−1ε− 1
.

Choose ε = λ(1− γ). Since λ ≥ 1 and km−1 ≥ 1/(1− γ), we have 2km−1ε ≥
2ε/(1− γ) = 2λ and

m−1∑
s=0

(s+ 2)−2ksε ≤ 1

2λ− 1
.

Using again km−1 ≥ (1 − γ)−1, we conclude that the probability in (19) is
larger than

1− (5eN(1− γ))−λ
2

2λ− 1
. (20)

Now we estimate
∑m−1

s=0 ts. We have

ts =
(1− γ)ks + 1√

γ0ks
φ−1

((
5eN

ksεs

)(1+ε)/γ0
)

=
(1− γ)ks + 1√

γ0ks

(
5eN

ksεs

)(1+ε)/γ0p

.
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Recall that γ > 1/2, km−1 ≥ 1/(1 − γ), so that (1 − γ)ks + 1 ≤ 2(1 − γ)ks
for s ≤ m− 1. Thus

ts ≤
2(1− γ)

√
ks√

γ0

(
5eN

ksεs

)(1+ε)/γ0p

.

Let b = (1 + ε)/γ0p. Assume that b < 1/2. Since ks ≤ γsk, we have

m−1∑
s=0

ts ≤
2(1− γ)k1/2−b(5eN)b

√
γ0

m−1∑
s=0

(s+ 2)δbγs(1/2−b). (21)

Since the function h(z) = z2bγz(1/2−b) on R+ is first increasing and then
decreasing, we get

m−1∑
s=0

(s+ 2)2bγs(1/2−b) = γ−2(1/2−b)
m+1∑
s=2

h(s) ≤ γ−1

(
sup
z>0

h(z) +

∫ ∞
0

h(z) dz

)

≤ 2

((
2b

(1/2− b)e ln(1/γ)

)2b

+
Γ(1 + 2b)

((1/2− b) ln(1/γ))1+2b

)
.

As 2b ≤ 1, Γ(1 + 2b) ≤ 1. Using also that ln(1/γ) ≥ 1− γ, we observe that
the previous quantity does not exceed

4

((1/2− b)(1− γ))1+2b
.

Coming back to (21), we get

m−1∑
s=0

ts ≤
8k1/2−b(5eN)b

(1/2− b)1+2b(1− γ)2b
√
γ − 1/2

. (22)

To conclude this computation, we choose the parameter

γ =
1 + λ+ σ/2

σ + λ
.

Note that γ ∈ (1/2, 1) as required, since λ ≥ 1 and 2 < σ. With such a
choice of γ, we have b = σ/p < 1/2, since σ < p/2. Thus from (22) and (20)

m−1∑
s=0

ts ≤ 8
√
k

(
5eN

k

)σ/p(
p

p/2− σ

)1+2σ/p(
σ + λ

σ/2− 1

)2σ/p
√

σ + λ

1 + λ/2
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holds with probability larger than

1−
(

5eN
σ/2− 1

σ + λ

)−λ
2

2λ− 1
.

Finally, to estimate Qkm , we note that

km <
1

1− γ
=

σ + λ

σ/2− 1
,

and apply “moreover” part of Proposition 5.4 (with ` = km). Note that at
the beginning of the proof we assumed that k ≥ 1/(1− γ). In the case k <
1/(1− γ) the result trivially holds by the “moreover” part of Proposition 5.4
applied with ` = k.

Case 2: φ(x) = (1/2) exp(xα). In this case we choose γ = 2/3, so
that γ0 = 1/6. As before we assume that k ≥ 1/(1 − γ) = 3 (otherwise
Qk(I) ≤ Q2(I)). By (16) we have km < 3, hence, by (18)

Qk(I) ≤ exp

(
4
m−1∑
s=0

εs

) (
Q2(I) + Ak

m−1∑
s=0

ts

)
.

We define ks by

εs =
1

2
exp

(
−
(
k

ks

)α/2
1

(s+ 2)2α

)
.

Observe that since ks ≤ γsk and γ = 2/3, one has

εs ≤
1

2
exp

(
−
(

3

2

)αs/2
1

(s+ 2)2α

)
≤ 1

2e
(s+ 2)2α

(
2

3

)sα/2
,

which implies
m−1∑
s=0

εs ≤
C

α
, (23)

for a positive absolute constant C.
We have

ts =
√

6
ks/3 + 1√

ks
φ−1

((
5eN

ksεs

)6(1+ε)
)

=
√

6
ks/3 + 1√

ks

(
ln

(
2

(
5eN

ksεs

)6(1+ε)
))1/α

.
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By (16) we have km < 3 ≤ km−1, hence,

ts ≤
√

6
2

3

√
ks (6 (1 + ε))1/α

(
ln

20eN

ksεs
+ ln

1

2εs

)1/α

≤
√

6
2

3
21/α

√
ks (6 (1 + ε))1/α

((
ln

20eN

ksεs

)1/α

+

(
ln

1

2εs

)1/α
)
.

By the choice of εs we obtain

m−1∑
s=0

√
ks

(
ln

1

2εs

)1/α

≤
√
k

m−1∑
s=0

(s+ 2)−2 ≤ 3
√
k. (24)

Since 3−sk ≤ ks ≤ (2/3)sk, we observe

m−1∑
s=0

√
ks

(
ln

20eN

ksεs

)1/α

≤
√
k
m−1∑
s=0

(
2

3

)s/2 (
ln

20eN3s

k

)1/α

≤
√
k

(
m−1∑
s=0

(
2

3

)s/2
21/α

(
ln

20eN

k

)1/α

+
m−1∑
s=0

(
2

3

)s/2
(2s ln 3)1/α

)

≤ C
1/α
1

√
k

((
ln

20eN

k

)1/α

+ Γ(1 + 1/α)

)
,

where C1 is an absolute positive constant and Γ is the Gamma function. This
together with (24) implies that

m−1∑
s=0

ts ≤ (C2(1 + ε))1/α
√
k

((
ln

20eN

k

)1/α

+ Γ(1 + 1/α)

)
, (25)

where C2 is an absolute positive constant.
Now we estimate the probability. By the choice of ks we have

m−1∑
s=0

εεkss =
m−1∑
s=0

exp (−εks ln(1/εs)) =
m−1∑
s=0

exp
(
−εks

(
ln 2 + (k/ks)

α/2(s+ 2)−2α
))

≤
m−1∑
s=0

exp
(
−εk1−α/2

s kα/2(s+ 2)−2α
)
.
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Since ks ≥ km−1 ≥ 1/(1− γ) and s+ 2 ≤ m+ 1 for every s ≤ m− 1, we
get that

m−1∑
s=0

εεkss ≤ m exp

(
− ε

(1− γ)1−α/2
kα/2

(m+ 1)2α

)
.

Since m is chosen such that 1/(1− γ) ≤ km−1 ≤ (2/3)m−1k, we observe that

m− 1 ≤ ln(k(1− γ))

ln(3/2)
.

Therefore,

m−1∑
s=0

εεkss ≤
(

1 +
ln(k/3)

ln(3/2)

)
exp

(
− ε

(1/3)1−α/2
kα/2

(2.5 ln k)2α

)
≤ 2 exp

(
−3ε

kα/2

3α/2 (2.5 ln k)2α

)
,

which shows that probability in (19) is at least

1− 4

(15eN)3ε
exp

(
−3ε

kα/2

(3.5 ln k)2α

)
.

Finally, to estimateQ2(I) we apply the “moreover” part of Proposition 5.4
(with ` = 2). Choosing ε = λ/3 and combining estimates (23), and (25) with
the estimate for Q2(I) we obtain the desired result. 2

5.3 Estimating Ak and Bk

We are now ready to pass to the proof of Theorem 2.1. To prove the theorem
we need two simple lemmas.

Lemma 5.6 Let β ∈ (0, 1). Let P1 and P2 be probability measures on Ω1

and Ω2 respectively and let V ⊂ Ω1 ⊗ Ω2 be such that

P1 ⊗ P2(V ) ≥ 1− β.

Then there exists W ⊂ Ω2 such that

P2(W ) ≥ 1−
√
β and ∀x2 ∈ W, P1 ({x1 : (x1, x2) ∈ V }) ≥ 1−

√
β.
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Proof. Fix some δ ∈ (0, 1). Let

W := {x2 ∈ Ω2 : P1 ({x1 ∈ Ω1 : (x1, x2) ∈ V }) ≥ 1− δ}.

Clearly,

W c = {x2 ∈ Ω2 : P1 ({x1 ∈ Ω1 : (x1, x2) ∈ V c}) ≥ δ}.

Then

β ≥ P1 ⊗ P2(V c) =

∫
Ω2

P1 ({x1 ∈ Ω1 : (x1, x2) ∈ V c}) dP2(x2)

≥
∫
W c

P1 ({x1 ∈ Ω1 : (x1, x2) ∈ V c}) dP2(x2) ≥ δ P2(W c),

which means P2(W ) ≥ 1− β/δ. The choice δ =
√
β completes the proof. 2

The following lemma is obvious.

Lemma 5.7 Let x1, . . . , xN ∈ Rn, then∑
i 6=j

〈xi, xj〉 = 22−N
∑

I⊂{1,...,N}

∑
i∈I

∑
j∈Ic
〈xi, xj〉 .

Proof of Theorem 2.1. From Lemma 5.7 we have∣∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣
2

−
N∑
i=1

a2
i |Xi|2

∣∣∣∣∣∣ = 22−N

∣∣∣∣∣∣
∑

I⊂{1,2,...,N}

〈∑
i∈I

aiXi,
∑
j∈Ic

aiXi

〉∣∣∣∣∣∣ .
We deduce that

B2
k ≤ 22−N sup

a∈Uk

∑
I⊂{1,2,...,N}

Qk(a, I, I
c) ≤ 22−N

∑
I⊂{1,2,...,N}

sup
a∈Uk

Qk(a, I, I
c)

≤ 22−N
∑

I⊂{1,2,...,N}

Qk(I).

Let I ⊂ {1, . . . , N} be fixed. Proposition 5.5 implies

P (Qk(I) ≤M0) ≥ 1− β, (26)
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where
M0 := Cφ t max

i≤N
|Xi|+ (M1/4)Ak.

Consider two probability spaces {I : I ⊂ {1, ..., N}} with the normalized
counting measure µ and our initial probability space (Ω,P), on which Xi’s
are defined. By (26) we observe that the µ ⊗ P probability of the event
V := {Qk(I) ≤ M0} is at least 1 − β. Then Lemma 5.6 implies that there
exists W ⊂ Ω such that P(W ) ≥ 1−

√
β and such that for every ω ∈ W one

has µ({Qk(I) ≤M0}) ≥ 1−
√
β. Since Qk(I) ≤ A2

k, we obtain that for every
ω ∈ W ,

B2
k ≤ 4M0 + 4

√
βA2

k.

Since A2
k ≤ maxi≤N |Xi|2 +B2

k, we have

A2
k ≤

4M0 + maxi≤N |Xi|2

1− 4
√
β

and B2
k ≤

4(M0 +
√
βmaxi≤N |Xi|2)

1− 4
√
β

. (27)

Therefore

A2
k ≤ (1− 4

√
β)−1

(
max
i≤N
|Xi|2 + 4Cφtmax

i≤N
|Xi|+M1Ak

)
.

Using
√
u2 + v2 ≤ u + v, and denoting γ = (1 − 4

√
β)−1 (recall M =

maxi≤N |Xi|) we obtain

Ak ≤
√
γ M + 2

√
Cφ γ tM + γ M1,

which proves the estimate for Ak. Plugging this into (27), we also observe

B2
k ≤ γ

(
4
√
βM2 + 4CφtM + γM2

1 +
√
γ M M1 + 2

√
Cφ γ tM M1

)
≤ γ

(
4
√
βM2 + 8CφtM + 2γM2

1 +
√
γ M M1

)
.

This completes the proof. 2

6 Optimality

In this section we discuss optimality of estimates in Theorems 1.2 and 2.1.

To obtain the lower estimates on Am we use the following observation.
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Lemma 6.1 Let A = (Xij)i≤n,j≤N be an n × N matrix with i.i.d. entries.
Then

P(Am ≥ t) ≥ 1

2
whenever P

(
|X11| ≥

t√
m

)
≥ m+ 1

N
. (28)

Proof. For every i ≤ N , let Xj ∈ Rn be the j-th columns of A. For m ≤ N
we have

Am = sup
a∈Um

∣∣∣∣∣
N∑
j=1

ajXj

∣∣∣∣∣ ≥ sup
a∈Um

∣∣∣∣∣
N∑
j=1

ajX1j

∣∣∣∣∣ ≥ sup
a∈Um

aj∈{±1/
√
m,0}

∣∣∣∣∣
N∑
j=1

ajX1j

∣∣∣∣∣
=

1√
m

m∑
j=1

X∗1j ≥
√
mX∗1m.

Therefore, using independence, we have

P (Am ≥ t) ≥ P
(
X∗1m ≥

t√
m

)
= P(Y ≥ m),

where Y is a real random variable with a binomial distribution of size N
and parameter v = P(|X11| ≥ t√

m
). It is well known that the median of Y ,

med(Y ) satisfies
bNvc ≤ med (Y ) ≤ dNve.

Thus P(Am ≥ t) ≥ 1
2

whenever m ≤ bNvc. This implies the result. 2

To evaluate RIP, we will use the following simple observation.

Lemma 6.2 Let n ≤ N and m ≤ N . Let A be an n × N random matrix
satisfying

P(Am ≥ t
√
m) ≥ 1

2
.

Assume also that A satisfies RIPm(δ) for some δ < 1 with probability greater
than 1/2. Then

mt2 ≤ 2n.

Proof. As A satisfies RIPm(δ) for some δ < 1 with probability greater than
1/2, then clearly

A2
m = sup

a∈Um
|
∑

aiXi|2 ≤ 2n
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with probability greater than 1/2. Therefore, with positive probability one
has

t
√
m ≤ Am ≤

√
2n,

which implies the result. 2

In order to show that a matrix with i.i.d. random variables satisfies
condition H(φ) with φ(t) = tp we need the Rosenthal’s inequality ([27], see
also [16]). As usual, by ‖ · ‖q for a random variable ξ we mean its Lq-norm
and for an a ∈ Rn its `q-norm, that is

‖ξ‖q = (E|ξ|q)1/q and ‖a‖q =

(
n∑
i=1

|ai|q
)1/q

.

Note that originally the Rosenthal inequality was proved for symmetric ran-
dom variables, but using standard symmetrization argument (i.e. passing
from random variables ξi’s to (ξi− ξ′i)’s, where (ξ′i)’s have the same distribu-
tion and are independent), one can pass to centered random variables.

Lemma 6.3 Let q > 2 and a ∈ Rn. Let ξ1, ..., ξn be i.i.d. centered ran-
dom variables with finite q-th moment. Then there exists a positive absolute
constant C such that

1

2
Mq ≤

∥∥∥∥∥
n∑
i=1

aiξi

∥∥∥∥∥
q

≤ C
q

ln q
Mq (29)

where Mq := max {‖a‖2‖ξ1‖2, ‖a‖q‖ξ1‖q}.

The following is an almost immediate corollary of Rosenthal’s inequality.
It should be compared with Proposition 1.3 of [29].

Corollary 6.4 Let p > 4. Let ξ be a random variable of variance one and
with a finite p-th moment. Let ξij, i ≤ n, j ≤ N be i.i.d. random variables
distributed as ξ. Then for every t > 0,

P

(
max
j≤N

∣∣∣∣∣ 1n
n∑
i=1

ξ2
ij − 1

∣∣∣∣∣ > t

)
≤
(

Cp

t ln p

)p/2
E|ξ|p N

np/4
,

where C is a positive absolute constant.
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Proof. Let ξ1, ..., ξn be i.i.d. random variables distributed as ξ. We apply
Rosenthal’s inequality to random variables (ξ2

i − 1) with q = p/2 and a =
(1, 1, ..., 1). Then∥∥∥∥∥

n∑
i=1

(ξ2
i − 1)

∥∥∥∥∥
p/2

≤ Cp
√
n ‖ξ2 − 1‖p/2 ≤ Cp

√
n
(
‖ξ2‖p/2 + 1

)
≤ 2Cp

√
n ‖ξ‖2

p,

where Cp = Cp/ ln p for an absolute positive constant C. Using Chebyshev’s
inequality we observe

P

(∣∣∣∣∣ 1n
n∑
i=1

ξ2
i − 1

∣∣∣∣∣ > t

)
≤ E

∑n
i=1 |ξ2

i − 1|p/2

(tn)p/2
≤

(2Cp)
p/2 ‖ξ‖pp

tp/2 np/4
.

The result follows by the union bound. 2

The next proposition gives a lower bound for Am to be compared with
Case 1 of Theorem 2.1, where we got Am ≤ Cp

√
m (N/m)2/p with high

probability.

Proposition 6.5 Let p > 2, 1 ≤ m ≤ N . There exists a sequence of random
vectors X1, · · · , XN in Rn satisfying

∀1 ≤ i ≤ N ∀a ∈ Sn−1 E| 〈Xi, a〉 |p ≤ 1 (30)

and such that

P

(
Am ≥

Cp

ln p

√
m

(
N

m

)1/p(
ln

(
2N

m

))−1/p
)
≥ 1

2
,

where C is an absolute positive constant.

Proof. Let λ ≥ 1 to be set later and let us put

fp(x) =

{
p

2(1−λ−p)|x|p+1 if 1 ≤ |x| ≤ λ

0 otherwise.

We have
∫
fp(x) dx = 1 and

app :=

∫
|x|pfp(x) dx = p

lnλ

1− λ−p
.
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Consider the random variable ξ(ω) = ω with respect to the density fp and
let (Xij) be i.i.d. copies of ξ/ap. Clearly, E|X11|p = 1. Since, for s ∈ [1, λ]

P (|ξ| > s) =
1

1− λ−p

(
1

sp
− 1

λp

)
,

a short computation using (28) shows that P(Am ≥ t) ≥ 1
2

provided that

t ≤
(

1− λ−p

p lnλ

)1/p√
m

(
N

(m+ 1)(1− λ−p) +Nλ−p

)1/p

=
√
m

(
1

p lnλ

)1/p(
N

m+ 1 +N/(λp − 1)

)1/p

.

Choosing λ from λp − 1 = N/(m + 1), we obtain P(Am ≥ t) ≥ 1
2

provided
that

t ≤
√
m

(
N

2(m+ 1) ln(2N/(m+ 1))

)1/p

.

Finally, to satisfy condition (30), we pass from matrix A to A′ = A/cp =
(Xij/cp)ij, where cp ≤ Cp/ ln p is a constant in Rosenthal’s inequality (29).
By Rosenthal’s inequality, the sequence of columns of A′ satisfies the condi-
tion (30). 2

The next proposition gives an upper bound on the size of sparsity m
in order to satisfy RIP under condition of Case 1 of Theorem 3.1 (see also
Remark 3 following this theorem).

Proposition 6.6 Let q > p > 2, n ≤ N and m ≤ N . There exists an
absolute positive constant C, an n×N matrix A, whose columns X1, ..., XN

satisfy

∀1 ≤ i ≤ N ∀a ∈ Sn−1 E| 〈Xi, a〉 |p ≤
(
Cp

ln p

)p
q

q − p

(
q − 2

q

)p/2
, (31)

and for every t ∈ (0, 1),

P
(

max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≥ t

)
≤ tp/2 (32)
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provided that

N ≤
(

q ln p

C(q − 2)p

)p/2
q − p
q

tp np/4.

Assume that A satisfies RIPm(δ) for some δ < 1 with probability greater than
1/2. Then

m

(
N

m+ 1

)2/q

≤ 2(q − 2)

q
n.

Proof. Consider the density

f(x) =

{
q

2|x|q+1 if |x| ≥ 1

0 otherwise.

We have
∫
f(x) dx = 1,∫
|x|pf(x) dx =

q

q − p
and a2

2 :=

∫
|x|2f(x) dx =

q

q − 2
.

Consider the random variable ξ(ω) = ω with respect to the density f and let
(Xij)ij be i.i.d. copies of ξ/a2. Clearly,

E|X11|2 = 1 and E|X11|p =
q

q − p

(
q − 2

q

)p/2
.

Then Rosenthal’s inequality (29) implies the condition (31) and Corollary 6.4
implies (32).

Now we estimate Am for the matrix A, whose columns are (Xij)i, j ≤ N .
Since, for s ≥ 1, P (|ξ| > s) = s−q, by (28), we obtain that P(Am ≥ t) ≥ 1

2

provided that

t ≤
√
m

√
q − 2

q

(
N

m+ 1

)1/q

.

This means

P

(
Am ≥

√
m

√
q − 2

q

(
N

m+ 1

)1/q
)
≥ 1

2
,

and we complete the proof applying Lemma 6.2. 2

The next proposition shows the optimality (up to absolute constants) of
the sparsity parameter in Case 2 of Theorem 3.1.
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Proposition 6.7 There exist absolute positive constants c, C such that the
following holds. Let α ∈ [1, 2], 1 ≤ m ≤ N/2 and n satisfies N ≤ exp(cnα/2).
There exists an n×N matrix A, whose columns X1, ..., XN satisfy

∀1 ≤ i ≤ N ∀a ∈ Sn−1 E exp (| 〈Xi, a〉 |α) ≤ C (33)

and

P

(
max
i≤N

∣∣∣∣ |Xi|2

n
− 1

∣∣∣∣ ≥ √2− 1

2

)
≤ 2 exp(−cnα/2), (34)

and such that

P

(
Am ≥

√
m

2

(
ln

N

m+ 1

)1/α
)
≥ 1

2
. (35)

Additionally, if n ≤ N and if A satisfies RIPm(δ) for some δ < 1 with
probability greater than 1/2, then

m

(
ln

N

m+ 1

)2/α

≤ 4n.

Proof. We consider a symmetric random variable ξ with the distribution
defined by P (|ξ| > t) = exp(−tα). It is easy to check that

E exp(|ξ|α/2) = 2

and

a := Eξ2 = Γ

(
2

α
+ 1

)
∈ [1, 2].

Let Xij, i ≤ n, j ≤ N be i.i.d. copies of ξ/
√
a, A = (Xij)ij and Xj’s be its

columns. Applying Lemma 3.4 from [4] (see also Theorem 1.2.8 in [11]) we
observe that Xi’s satisfy conditions (33) and (34). By (28) we observe that
P(Am ≥ t) ≥ 1

2
provided that

P
(
|ξ| ≥

√
a t√
m

)
= exp

(
−
(√

at/
√
m
)α) ≥ m+ 1

N
.

Thus it is enough to take

t ≤
√
m

a

(
ln

N

m+ 1

)1/α

.

This proves the estimate (35).
Finally, the “additionally” part follows by Lemma 6.2. 2
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Université Paris-Est
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