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Abstract

We introduce the vertex index, vein(K), of a given centrally sym-
metric convex body K ⊂ Rd, which, in a sense, measures how well
K can be inscribed into a convex polytope with small number of ver-
tices. This index is closely connected to the illumination parameter
of a body, introduced earlier by the first named author, and, thus, re-
lated to the famous conjecture in Convex Geometry about covering of
a d-dimensional body by 2d smaller positively homothetic copies. We
provide asymptotically sharp estimates (up to a logarithmic term) of
this index in the general case. More precisely, we show that for every
centrally symmetric convex body K ⊂ Rd one has

d3/2

√
2πe ovr(K)

≤ vein(K) ≤ C d3/2 ln(2d),

where ovr(K) = inf (vol (E)/ vol (K))1/d is the outer volume ratio of
K with the infimum taken over all ellipsoids E ⊃ K and with vol (·)
denoting the volume. Also, we provide sharp estimates in dimensions
2 and 3. Namely, in the planar case we prove that 4 ≤ vein(K) ≤ 6
with equalities for parallelograms and affine regular convex hexagons,
and in the 3-dimensional case we show that 6 ≤ vein(K) with equality
for octahedra. We conjecture that the vertex index of a d-dimensional
Euclidean ball (resp., ellipsoid) is 2d

√
d. We prove this conjecture in

dimensions two and three.
∗Keywords: convex body, illumination parameter, vertex index, Boltyanski-Hadwiger

conjecture, volume ratio. 2000 Mathematical Subject Classification. Primary: 46B07,
46B09, 52A. Secondary: 51M16, 53A55

†Partially supported by the Hung. Nat. Sci. Found (OTKA), grant no. T043556
‡Partially supported by a Natural Sciences and Engineering Research Council of

Canada Discovery Grant

1



1 Introduction

Let K be a convex body symmetric about the origin 0 in Rd, d ≥ 2 (such
bodies below we call 0-symmetric convex bodies). Now, we place K in a
convex polytope, say P, with vertices p1, p2, . . . , pn, where n ≥ d + 1. Then
it is natural to measure the closeness of the vertex set of P to the origin 0 by
computing

∑
1≤i≤n ‖pi‖K, where ‖x‖K = inf{λ > 0 | x ∈ λK} denotes the

norm of x ∈ Rd generated by K. Finally, we look for the convex polytope
that contains K and whose vertex set has the smallest possible closeness to
0 and introduce the vertex index, vein(K), of K as follows:

vein(K) = inf

{∑
i

‖pi‖K | K ⊂ conv {pi}

}
.

We note that vein(K) is an affine invariant quantity assigned to K, i.e.
if A : Rd → Rd is an (invertible) linear map, then vein(K) = vein(A(K)).
The main goal of this paper is to give lower and upper estimates on vein(K).
This question seems to raise a fundamental problem that is connected to
some important problems of analysis and geometry including the problem
of estimating the illumination parameters of convex bodies, the Boltyanski-
Hadwiger illumination conjecture, some of the problems on covering a convex
body by another one, and the problem of estimating the Banach-Mazur dis-
tances between convex bodies. Section 3 of this paper provides more details
on these connections. Next we summarize the major results of our paper.

Theorem A For every d ≥ 2 one has

d3/2

√
2πe

≤ vein(Bd
2) ≤ 2d3/2,

where Bd
2 denotes the Euclidean unit ball in Rd. Moreover, if d = 2, 3 then

vein(Bd
2) = 2d3/2.

In fact, the above theorem is a combination of Theorem 4.1 and of Corol-
lary 5.3 in Sections 4 and 5. In connection with that it seems natural to
conjecture the following.

Conjecture B For every d ≥ 2 one has

vein(Bd
2) = 2d3/2.
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If Conjecture B holds, then it is easy to see that it implies via Lemma 3.5
the inequality vein(K) ≥ 2d for any 0-symmetric convex body K in Rd. This
estimate was recently obtained in [GL]. Note that by Proposition 5.1 below,
vein(C) = 2d, where C denotes any d-dimensional crosspolytope of Rd.

The following is the major result of Section 5, which is, in fact, a combi-
nation of Theorems 5.2 and 5.6.

Theorem C There are absolute constants c > 0, C > 0 such that for every
d ≥ 2 and every 0-symmetric convex body K in Rd one has

d3/2

√
2πe ovr(K)

≤ vein(K) ≤ C d3/2 ln(2d),

where ovr(K) = inf (vol (E)/ vol (K))1/d is the outer volume ratio of K with
the infimum taken over all ellipsoids E ⊃ K and with vol (·) denoting the
volume.

Examples of a cross-polytope C (see Proposition 5.1) and of Bd
2 (see

Theorem A) show that both estimates in Theorem C can be asymptotically
sharp, up to a logarithmic term. One may wonder about the precise bounds.
Section 4 investigates this question in dimensions 2 and 3. However, in high
dimensions the answer to this question might be different. As we mentioned
above, the function vein(·) attains its minimum at crosspolytopes. It is not
clear to us for what convex bodies should the function vein(·) attain its
maximum. In particular, as Corollary 5.3 gives an upper estimate on the
vertex index of d-cubes which is somewhat weaker than the similar estimate
for Euclidean d-balls, it is natural to ask, whether the function vein(·) attains
its maximum at (affine) cubes (at least in some dimensions). On the other
hand, it would not come as a surprise to us if the answer to this question
were negative, in which case it seems reasonable to suggest the ellipsoids (in
particular, in dimensions of the form d = 2m) or perhaps, the dual of S− S,
where S denotes any simplex, as convex bodies for which the function vein(·)
attains its maximum.

Acknowledgment. In the first version of this paper the estimate

c d3/2

ovr(K)
√

ln(2d)
≤ vein(K) ≤ C d3/2 ln(2d)
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in Theorem C was proved. The proof used a volumetric result from [GMP],
the Hadamard inequality, and an averaging argument. E. D. Gluskin noticed
that the use of a result from [BaP] (together with Santaló inequality) instead
allows to remove the logarithmic term in the lower bound. We are grateful
to Gluskin for this remark. We are also grateful to the anonymous referee,
who later noticed the same improvement.

2 Notations

In this paper we identify the a d-dimensional affine space with Rd. By | · |
and 〈·, ·〉 we denote the canonical Euclidean norm and the canonical inner
product on Rd. The canonical basis of Rd we denote by e1, . . . , ed. By ‖ · ‖p,
1 ≤ p ≤ ∞, we denote the `p-norm, i.e.

‖x‖p =

(∑
i≥1

|xi|p
)1/p

for p < ∞ and ‖x‖∞ = sup
i≥1

|xi|.

In particular, ‖ · ‖2 = | · |. As usual, `d
p = (Rd, ‖ · ‖p), and the unit ball of `d

p

is denoted by Bd
p.

Given points x1, . . . , xk in Rd we denote their convex hull by conv {xi}i≤k

and their absolute convex hull by abs conv {xi}i≤k = conv {±xi}i≤k. Simi-
larly, the convex hull of a set A ⊂ Rd is denoted by conv A and absolute
convex hull of A is denoted by abs conv A (= conv A ∪ −A).

Let K ⊂ Rd be a convex body, i.e. a compact convex set with non-empty
interior such that the origin 0 of Rd belongs to K. We denote by K◦ the
polar of K, i.e.

K◦ = {x | 〈x, y〉 ≤ 1 for every y ∈ K} .

As is well-known, if E is a linear subspace of Rd, then the polar of K ∩ E
(within E) is

(K ∩ E)◦ = PEK◦,

where PE is the orthogonal projection onto E. Note also that K◦◦ = K.
If K is an 0-symmetric convex body, then the Minkowski functional of K,

‖x‖K = inf{λ > 0 | x ∈ λK},

defines a norm on Rd with the unit ball K.

4



The Banach-Mazur distance between two 0-symmetric convex bodies K
and L in Rd is defined by

d(K,L) = inf {λ > 0 | L ⊂ TK ⊂ λL},

where the infimum is taken over all linear operators T : Rd → Rd. It is easy
to see that

d(K,L) = d(K◦,L◦).

The Banach-Mazur distance between K and the closed Euclidean ball Bd
2

we denote by dK. As it is well-known, John’s Theorem ([J]) implies that
for every 0-symmetric convex body K, dK is bounded by

√
d. Moreover,

dBd
1

= dBd
∞

=
√

d (see e.g. [T]).

Given a (convex) body K in Rd we denote its volume by vol (K). Let K
be a 0-symmetric convex body in Rd. The outer volume ratio of K is

ovr(K) = inf

(
vol (E)

vol (K)

)1/d

,

where the infimum is taken over all 0-symmetric ellipsoids in Rd containing
K. By John’s theorem we have

ovr(K) ≤
√

d.

Note also that

vol (Bd
2) =

πd/2

Γ(1 + d/2)
≤
(

2πe

d

)d/2

,

where Γ(·) denotes the Gamma-function.
Given a finite set A we denote its cardinality by |A|.

3 Preliminary results and relations to other

problems

Let K be a 0-symmetric convex body in Rd, d ≥ 2. An exterior point p ∈
Rd \K of K illuminates a boundary point q of K if the half line emanating
from p passing through q intersects the interior of K (after the point q).
Furthermore, a family of exterior points of K, say {p1, p2, . . . , pn} ⊂ Rd \K,
illuminates K if each boundary point of K is illuminated by at least one
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of the points p1, p2, . . . , pn. The points p1, p2, . . . , pn here are called light
sources. The well-known Boltyanski-Hadwiger conjecture says that every d-
dimensional convex body K can be illuminated by 2d points. Clearly, we
need 2d points to illuminate any d-dimensional affine cube. The Boltyanski-
Hadwiger conjecture is equivalent to another famous long-standing conjecture
in Convex Geometry, which says that every d-dimensional convex body K
can be covered by 2d smaller positively homothetic copies of K. Again, the
example of a d-dimensional affine cube shows that 2d cannot be improved
in general. We refer the interested reader to [Be2], [Be3], [MS] for further
information and partial results on these conjectures.

Although computing the smallest number of points illuminating a given
body is very important, it does not provide any quantitative information on
points of illumination. In particular, one can take light sources to be very far
from the body. To control that, the first named author introduced ([Be1])
the illumination parameter, ill(K), of K as follows:

ill(K) = inf

{∑
i

‖pi‖K | {pi}i illuminates K

}
.

Clearly this insures that far-away light sources are penalized. In [Be1] the
following theorem was stated with an outline of its proof. (The detailed proof
can be found in [BeBK]).

Theorem 3.1 If K is a 0-symmetric convex domain of R2, then ill(K) ≤ 6
with equality for any affine regular convex hexagon.

In the same paper the problem of finding the higher dimensional analogue
of that claim was raised as well.

Motivated by the notion of the illumination parameter Swanepoel [Sw]
introduced the covering parameter, cov(K), of K in the following way.

cov(K) = inf

{∑
i

(1− λi)
−1 | K ⊂

⋃
i

(λiK + ti), 0 < λi < 1, ti ∈ Rd

}
.

In this way homothets almost as large as K are penalized. Swanepoel [Sw]
proved the following inequality.

Theorem 3.2 There exists an absolute constant C such that for every 0-
symmetric convex body K in Rd, d ≥ 2 one has

ill(K) ≤ 2 · cov(K) ≤ C2dd2 ln d.
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It is not difficult to see that for any convex body K in Rd, d ≥ 2 one
has vein(K) ≤ ill(K) with equality for all smooth K. Thus, the above two
theorems yield the following immediate result.

Corollary 3.3 Let K be an 0-symmetric convex body in Rd, d ≥ 2. Then

(i) in case of d = 2 the inequality vein(K) ≤ 6 holds;

(ii) in case of d ≥ 3 the inequality vein(K) ≤ C2dd2 ln d stands.

As we mentioned in the Introduction, the main goal of this paper is to
improve the above estimates and also to give lower bounds. We note that
Theorem A and C essentially improve the previously known estimates on the
illumination parameter (of smooth convex bodies). Indeed, they immediately
imply the following corollary.

Corollary 3.4 For every d ≥ 2 and every 0-symmetric convex body K ⊂ Rd

one has
d3/2

√
2πe ovr(K)

≤ ill(K).

Moreover, if K is smooth, then

ill(K) ≤ C d3/2 ln(2d),

where C > 0 is an absolute constant.

Finally, we mention two results on Banach-Mazur distances, that will be
used below.

Lemma 3.5 Let K and L be 0-symmetric convex bodies in Rd. Then

vein(K) ≤ d (K,L) · vein(L).

Proof: Let T be a linear operator such that K ⊂ TL ⊂ λK. Let p1, p2, ..., pn ∈
Rd be such that conv {pi}1≤i≤n ⊃ L. Then conv {Tpi}1≤i≤n ⊃ TL ⊃ K.
Since TL ⊂ λK, we also have ‖ · ‖K ≤ λ‖ · ‖TL. Therefore,∑

1≤i≤n

‖Tpi‖K ≤ λ
∑

1≤i≤n

‖Tpi‖TL = λ
∑

1≤i≤n

‖pi‖L,

which implies the desired result. 2
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Remark. It is known ([A], see also [T]) that for every 2-dimensional 0-
symmetric convex body K one has d(K,B2

∞) ≤ 3/2. Since, clearly, vein(B2
∞) ≤

4, we immediately obtain

vein(K) ≤ d(K,B2
∞) vein(B2

∞) ≤ 6,

reproving (i) of Corollary 3.3.
We will also use the following result (Theorem 2 in [GKM], see also Propo-

sition 37.6 in [T]).

Theorem 3.6 For every d ≥ 1 we have

d
(
Bd

1,B
d
∞
)
≤ C

√
d,

with C = 1 if d = 2m for some integer m and C =
√

2 + 1 in the general
case.

4 The vertex index in dimensions 2 and 3

In this section we prove the following theorem.

Theorem 4.1

(i) For the Euclidean balls in R2 and R3 we have

vein(B2
2) = 4

√
2, vein(B3

2) = 6
√

3.

(ii) In general, if K ⊂ R2, L ⊂ R3 are arbitrary 0-symmetric convex bodies,
then

4 ≤ vein(K) ≤ 6 ≤ vein(L) ≤ 18.

Remarks.
1. Clearly, vein(Bd

1) ≤ 2d. Thus, Theorem 4.1 implies vein(Bd
1) = 2d for

d = 2 and d = 3. Below (Proposition 5.1) we extend this equality to the
general case.
2. By Remark 1, the lower estimates in (ii) are sharp. Moreover, it is not
hard to see that the upper estimate 6 in the planar case is also sharp by
taking any affine regular convex hexagon (cf. Theorem 3.1).
3. We do not know the best possible upper estimate in the 3-dimensional
case. It seems reasonable to conjecture the following.
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Conjecture 4.2 If K is an arbitrary 0-symmetric convex body in R3, then

vein(K) ≤ 12

with equality for truncated octahedra of the form T−T, where T denotes an
arbitrary tetrahedron of R3.

Note that by Lemma 3.5 this conjecture would be true if, for example,
one could prove that d(B3

1,K) ≤ 2 for every 0-symmetric 3-dimensional
convex body. To the best of our knowledge no estimates are known for
maxK d(B3

1,K), except the trivial bound 3. Note also that any bound better
than 3 will improve the estimate 18 in part (ii) of Theorem 4.1.

To prove Theorem 4.1 we need the following Lemma. The lemma can be
proved using standard analytic approach or tools like MAPLE. We omit the
details.

Lemma 4.3 Let f be a function of two variables defined by

f(x, y) = tan
π

y
tan

(
x + (y − 2)π

2y

)
.

Then

(i) for every fixed 0 < x0 < 2π the function f(x0, y) is decreasing in y over
the interval [3,∞);

(ii) for every fixed y0 ≥ 3 the function f(x, y0) is increasing in x over the
interval (0, 2π);

(iii) for every fixed y0 ≥ 3 the function f(x, y0) is convex on the interval
(0, 2π);

(iv) f is convex on the closed rectangle {(x, y) | 0.4 ≤ x ≤ 5.5, 3 ≤ y ≤ 9}.

Proof of Theorem 4.1:
(i) The upper estimate vein(Bd

2) ≤ 2d
√

d is trivial, since Bd
2 ⊂

√
d Bd

1 for
every d (cf. Corollary 5.3 below). We show the lower estimates.

Let P ⊂ R2 be a convex polygon with vertices p1, p2, . . . , pn, n ≥ 3 con-
taining B2

2. Let P◦ denote the polar of P. Assume that the side of P◦

corresponding to the vertex pi of P generates the central angle 2αi with ver-
tex 0. Clearly, 0 < αi < π/2 and |pi| ≥ 1

cos αi
for all i ≤ n. As 1

cos x
is a convex
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function over the open interval (−π/2, π/2) therefore the Jensen inequality
implies that

n∑
i=1

|pi| ≥
n∑

i=1

1

cos αi

≥ n

cos
(∑n

i=1 αi

n

) =
n

cos π
n

.

It is easy to see that n
cos (π/n)

≥ 4
cos (π/4)

= 4
√

2 holds for all n ≥ 3. Thus,

vein(B2
2) ≥ 4

√
2. This completes the proof in the planar case.

Now, we handle the 3-dimensional case. Let P ⊂ R3 be a convex polyhe-
dron with vertices p1, p2, . . . , pn, n ≥ 4, containing B3

2. Of course, we assume
that |pi| > 1. We distinguish the following three cases: (a) n = 4 , (b) n ≥ 8
and (c) 5 ≤ n ≤ 7. In fact, the proof given for Case (c) works also for Case
(b), however the Case (b) is much simpler, so we have decided to consider it
separately.

Case (a): n = 4. In this case P is a tetrahedron with triangular faces
T1, T2, T3, and T4. Without loss of generality we may assume that B3

2 is
tangential to the faces T1, T2, T3, and T4. Then the well-known inequality
between the harmonic and arithmetic means yields that

1 =
4∑

i=1

1
3
area(Ti)

vol(P)
≥

4∑
i=1

1

|pi|+ 1
≥ 42∑4

i=1(|pi|+ 1)
.

This implies in a straightforward way that

4∑
i=1

|pi| ≥ 12 > 6
√

3,

finishing the proof of this case.

For the next two cases we will need the following notation. Fix i ≤ n.
Let Ci denote the (closed) spherical cap of S2 with spherical radius Ri which
is the union of points x ∈ S2 such that the open line segment connecting x
and pi is disjoint from B3

2. In other words, Ci is the spherical cap with the
center pi/|pi| and the spherical radius Ri, satisfying |pi| = 1

cos Ri
. By bi we

denote the spherical area of Ci. Then bi = 2π(1− cos Ri).

Case (b): n ≥ 8. Since P contains B3
2, we have

S2 ⊂
n⋃

i=1

Ci.
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Comparing the areas, we observe

4π ≤
n∑

i=1

bi =
n∑

i=1

2π (1− cos Ri) ,

which implies
n∑

i=1

cos Ri ≤ n− 2.

Applying again the inequality between the harmonic and arithmetic means,
we obtain

n∑
i=1

|pi| =
n∑

i=1

1

cos Ri

≥ n2∑n
i=1 cos Ri

≥ n2

n− 2
≥ 64

6
> 6

√
3.

Case (c): 5 ≤ n ≤ 7. Let P◦ denote the polar of P. Given i ≤ n, let
Fi denote the central projection of the face of P◦ that corresponds to the
vertex pi of P from the center 0 onto the boundary of B3

2, i.e. onto the unit
sphere S2 centered at 0. Obviously, Fi is a spherically convex polygon of S2

and Fi ⊂ Ci. Let ni denote the number of sides of Fi and let ai stand for
the spherical area of Fi. Note that the area of the sphere is equal to the
sum of areas of Fi’s, that is

∑n
i=1 ai = 4π. As 10 < 6

√
3 = 10.3923... < 11,

therefore without loss of generality we may assume that there is no i for
which |pi| = 1

cos Ri
≥ 11 − 3 = 8, in other words we assume that 0 < Ri <

arccos 1
8

= 1.4454... < π
2

for all i ≤ n. Note that this immediately implies
that 0 < ai < bi = 2π(1− cos Ri) < 7π

4
< 5.5 for all 1 ≤ i ≤ n.

It is well-known that if C ⊂ S2 is a (closed) spherical cap of radius less
than π

2
, then the spherical area of a spherically convex polygon with at most

s ≥ 3 sides lying in C is maximal for the regular spherically convex polygon
with s sides inscribed in C. (This can be easily obtained with the help of
the Lexell-circle (see [F]).) It is also well-known that if F ∗

i denotes a regular
spherically convex polygon with ni sides and of spherical area ai, and if R∗

i

denotes the circumradius of F ∗
i , then 1

cos R∗i
= tan π

ni
tan
(ai+(ni−2)π

2ni

)
. Thus,

for every i ≤ n we have

|pi| =
1

cos Ri

≥ tan
π

ni

tan

(
ai + (ni − 2)π

2ni

)
.

Here 3 ≤ ni ≤ n− 1 ≤ 6 and 0 < ai < 7π
4

for all 1 ≤ i ≤ n.
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Now, it is natural to consider the function f(x, y) = tan π
y

tan
(x+(y−2)π

2y

)
defined on {(x, y) | 0 < x < 2π, 3 ≤ y}. As in 2-dimensional case we are
going to use the Jensen inequality. But, unfortunately, it turns out that f is
convex only on a proper subset of its domain, see Lemma 4.3. Without loss
of generality we may assume that m is chosen such that 0 < ai < 0.4 for all
i ≤ m and 0.4 ≤ ai < 5.5 for all m + 1 ≤ i ≤ n. Since

∑n
i=1 ai = 4π, one has

m < n− 1. By Lemma 4.3 (iv) and by the Jensen inequality, we obtain

n∑
i=1

|pi| ≥
m∑

i=1

|pi|+
n∑

i=m+1

f(ai, ni)

≥ m + (n−m) f

(
1

n−m

n∑
i=m+1

ai,
1

n−m

n∑
i=m+1

ni

)
(here by

∑0
i we mean 0). Since

∑n
i=1 ai = 4π, we have

∑n
i=m+1 ai >

4π − 0.4m. By Euler’s theorem on the edge graph of P◦ we also have that∑n
i=1 ni ≤ 6n−12 and therefore

∑n
i=m+1 ni ≤ (6n−12)−3m. Thus, applying

Lemma 4.3 (i) and (ii), we observe

n∑
i=1

|pi| ≥ m + (n−m)f

(
4π − 0.4m

n−m
,

(6n− 12)− 3m

n−m

)
=: g(m, n).

First we show that g(m,n) ≥ 6
√

3 = 10.3923... for every (m, n) with
6 ≤ n ≤ 7 and 0 ≤ m < n− 1.

Subcase n = 7:

g(0, 7) = 10.9168..., g(1, 7) = 10.8422..., g(2, 7) = 10.8426...,

g(3, 7) = 11.0201..., g(4, 7) = 11.7828..., g(5, 7) = 18.3370....

Subcase n = 6:

g(0, 6) = 6
√

3 = 10.3923..., g(1, 6) = 10.4034..., g(2, 6) = 10.6206...,

g(3, 6) = 11.5561..., g(4, 6) = 21.2948....

Subcase n = 5: First note that

6
√

3 < g(1, 5) = 10.6302... < g(2, 5) = 11.8680... < g(3, 5) = 28.1356....
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Unfortunately, g(0, 5) < 6
√

3, so we treat the case n = 5 slightly differently
(in fact the proof is easier than the proof of the case 6 ≤ n ≤ 7, since we will
use convexity of a function of one variable).

In this case P has only 5 vertices, so it is either a double tetrahedron or
a cone over a quadrilateral. As the later one can be thought of as a limiting
case of double tetrahedra, we can assume that the edge graph of P has two
vertices, say p1 and p2, of degree three and three vertices, say p3, p4, and p5,
of degree four. Thus n1 = n2 = 3 and n3 = n4 = n5 = 4. Therefore

5∑
i=1

|pi| ≥
5∑

i=1

f(ai, ni) =
2∑

i=1

f(ai, 3) +
5∑

i=3

f(ai, 4).

By Lemma 4.3 (iii) and by the Jensen inequality, we get

5∑
i=1

|pi| ≥ 2 f

(
a1 + a2

2
, 3

)
+ 3 f

(
a3 + a4 + a5

3
, 4

)

= 2 f(a, 3) + 3 f

(
4π − 2a

3
, 4

)
= 2

√
3 tan

(
a + π

6

)
+ 3 tan

(
5π − a

12

)
=: h(a),

where 0 ≤ a = a1+a2

2
< 5.5. Finally, it is easy to show that the minimum

value of h(a) over the closed interval 0 ≤ a ≤ 5.5 is (equal to 10.5618... and
therefore is) strictly larger than 6

√
3 = 10.3923..., completing the proof of

the first part of the theorem.

(ii) First, observe that (i), John’s Theorem, and Lemma 3.5 imply that

4 =
4
√

2√
2
≤ vein(B2

2)

dK

≤ vein(K)

and

6 =
6
√

3√
3
≤ vein(B3

2)

dL

≤ vein(L) ≤ dL · vein(B3
2) ≤ 18.

Second, Corollary 3.3 shows that indeed vein(K) ≤ 6, finishing the proof. 2

Remark. Note that the proof of Case (a) works in higher dimensions as
well. Namely, if P is a simplex containing the Euclidean ball Bd

2 and the pi’s
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denote the vertices of P, then

n+1∑
i=1

|pi| ≥ d(d + 1)

with equality only for regular simplices circumscribed Bd
2.

5 The vertex index in the high dimensional

case

In this section we deal with the high dimensional case. First, we compute
precisely vein(Bd

1). Then we provide a lower and an upper estimates in the
general case.

In fact, the estimate for vein(Bd
1) follows now from the more general

fact, namely vein(K) ≥ 2d for every 0-symmetric K in Rd, proved in [GL].
However the proof of this fact is very non-trivial and quite long, so we have
decided to present a simple direct proof for the case K = Bd

1.

Proposition 5.1 For every d ≥ 2 one has

vein(Bd
1) = 2d.

Proof: The estimate vein(Bd
1) ≤ 2d is trivial.

Now assume that {pi}N
i=1 be such that pi = {pij}d

j=1 ∈ Rd for every i ≤ N
and Bd

1 ⊂ conv {pi}N
i=1. Then for every k ≤ d we have that ek and −ek are

convex combinations of pi’s, that is, there are {αki}N
i=1 and {βki}N

i=1 such that
αki ≥ 0, βki ≥ 0, i ≤ N , and

N∑
i=1

αki =
N∑

i=1

βki = 1, ek =
N∑

i=1

αkipi, −ek =
N∑

i=1

βkipi.

It implies for every k

1 =
N∑

i=1

αkipik ≤ max
i≤N

pik

and

−1 =
N∑

i=1

βkipik ≥ min
i≤N

pik.
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Therefore

N∑
i=1

‖pi‖1 =
N∑

i=1

d∑
k=1

|pik| ≥
d∑

k=1

(
max
i≤N

pik −min
i≤N

pik

)
≥ 2d,

proving the lower estimate vein(Bd
1) ≥ 2d. 2

5.1 A lower bound

In this section, we provide a lower estimate for vein(K) in terms of outer
volume ratio of K. As the example of the Euclidean ball shows, our estimate
can be asymptotically sharp.

Theorem 5.2 There is an absolute constant c > 0 such that for every d ≥ 2
and every 0-symmetric convex body K in Rd one has

d3/2

√
2πe ovr(K)

≤ d(
vol (Bd

2)
)1/d

ovr(K)
≤ vein(K).

Proof: Recall that vein(K) is an affine invariant, i.e. vein(K) = vein(TK)
for every invertible linear operator T : Rd → Rd. Thus, without lost of
generality we can assume that Bd

2 is the ellipsoid of minimal volume for K.
In particular, K ⊂ Bd

2, so | · | ≤ ‖ · ‖K.
Let {pi}N

1 ∈ Rd be such that K ⊂ conv {pi}N
1 . Clearly N ≥ d+1. Denote

L := abs conv {pi}N
1 .

Then
L◦ = {x | | 〈x, pi〉 | ≤ 1 for every i ≤ N} .

By Theorem 2 of [BaP], we observe

vol (L◦) ≥

(
d∑N

1 |pi|

)d

.

Since, by Santaló inequality vol (L) vol (L◦) ≤
(
vol
(
Bd

2

))2
and since K ⊂ L,

we obtain

vol (K) ≤ vol (L) ≤
(
vol
(
Bd

2

))2
vol (L◦)

≤
(
vol
(
Bd

2

))2(1

d

N∑
1

|pi|

)d

.

15



Finally, since Bd
2 is the minimal volume ellipsoid for K and since ‖ ·‖K ≥ | · |,

we have

1

ovr(K)
=

(
vol (K)

vol
(
Bd

2

))1/d

≤
(
vol
(
Bd

2

))1/d 1

d

N∑
1

‖pi‖K,

which implies the desired result. 2

We have the following immediate corollary of Theorem 5.2.

Corollary 5.3 For every d ≥ 2 one has

d3/2

√
2πe

≤ vein(Bd
2) ≤ 2 d3/2,

d3/2

πe
≤ vein(Bd

∞) ≤ C d3/2,

where C = 2 if d = 2m for some integer m and C = 2/(
√

2− 1) in general.

Proof: The lower estimates here follow from Theorem 5.2 and computation
of volumes. Indeed, as we noticed above,

vol (Bd
2) ≤

(
2πe

d

)d/2

and, therefore,

ovr(Bd
∞) ≤

vol
(√

d Bd
2

)
vol (Bd

∞)

1/d

≤
√

2πe

2
.

The upper estimates follow from Proposition 5.1 and Lemma 3.5, since
d(Bd

2,B
d
1) =

√
d and, by Theorem 3.6, d(Bd

∞,Bd
1) ≤ (C/2)

√
d. 2

5.2 An upper bound

Let u, v ∈ Rd. As usual Id : Rd → Rd denotes the identity operator and
u ⊗ v denotes the operator from Rd to Rd, defined by (u ⊗ v)(x) = 〈u, x〉 v
for every x ∈ Rd. In [R1, R2], M. Rudelson proved the following theorem
(see Corollary 4.3 of [R1] and Theorem 1.1 with Remark 4.1 of [R2]).
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Theorem 5.4 For every 0-symmetric convex body K in Rd and every ε ∈
(0, 1] there exists a 0-symmetric convex body L in Rd such that d(K,L) ≤ 1+ε
and Bd

2 is the minimal volume ellipsoid containing L, and

Id =
M∑
i=1

ciui ⊗ ui,

where c1, ..., cM are positive numbers, u1, ..., uM are contact points of L
and Bd

2 (that is ‖ui‖L = |ui| = 1), and

M ≤ C ε−2 d ln(2d),

with an absolute constant C.

Remark. It is a standard observation (cf. [Ba], [T]) that under the condi-
tions of Theorem 5.4 one has

P ⊂ L ⊂ Bd
2 ⊂

√
d L,

for P = abs conv {ui}i≤M . Indeed, P ⊂ L by the convexity and the symmetry
of L, and for every x ∈ Rd we have

x = Id x =
M∑
i=1

ci 〈ui, x〉ui,

so

|x|2 = 〈x, x〉 =
M∑
i=1

ci 〈ui, x〉2 ≤ max
i≤M

〈ui, x〉2
M∑
i=1

ci = ‖x‖2
P◦

M∑
i=1

ci.

Since

d = trace Id = trace
M∑
i=1

ciui ⊗ ui =
M∑
i=1

ci 〈ui, ui〉 =
M∑
i=1

ci,

we obtain |x| ≤
√

d ‖x‖P◦ , which means P◦
√

d ⊂ Bd
2 . By duality we have

Bd
2 ⊂

√
d P. Therefore, d(K,P) ≤ d(K,L) d(L,P) ≤ (1+ ε)

√
d, and, hence,

we have the following immediate consequence of Theorem 5.4.
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Corollary 5.5 For every 0-symmetric convex body K in Rd and every ε ∈
(0, 1] there exists a 0-symmetric convex polytope P in Rd with M vertices
such that d(K,P) ≤ (1 + ε)

√
d and

M ≤ C ε−2 d ln(2d),

where C is an absolute constant.

This Corollary implies the general upper estimate for vein(K).

Theorem 5.6 For every centrally symmetric convex body K in Rd one has

vein(K) ≤ C d3/2 ln(2d),

where C is an absolute constant.

Proof: Let P be a polytope given by Corollary 5.5 applied to K with
ε = 1. Then d(K,P) ≤ 2

√
d. Clearly, vein(P) ≤ M (just take the pi’s in

the definition of vein(·) to be vertices of P). Thus, by Lemma 3.5 we obtain
vein(K) ≤ 2M

√
d, which completes the proof. 2
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