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Abstract

Let K be an isotropic convex body in Rn. Given ε > 0, how
many independent points Xi uniformly distributed on K are needed
for the empirical covariance matrix to approximate the identity up
to ε with overwhelming probability? Our paper answers this ques-
tion from [12]. More precisely, let X ∈ Rn be a centered random
vector with a log-concave distribution and with the identity as covari-
ance matrix. An example of such a vector X is a random point in
an isotropic convex body. We show that for any ε > 0, there exists
C(ε) > 0, such that if N ∼ C(ε) n and (Xi)i≤N are i.i.d. copies of
X, then

∥∥∥ 1
N

∑N
i=1 Xi ⊗ Xi − Id

∥∥∥ ≤ ε, with probability larger than

1− exp(−c
√

n).
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1 Introduction

Let X ∈ Rn be a centered random vector with covariance matrix Σ and
considerN independent random vectors (Xi)i≤N distributed asX. By the law
of large numbers, the empirical covariance matrix 1

N

∑N
i=1Xi⊗Xi converges

to EX ⊗ X = Σ as N → ∞. Our aim is to give quantitative estimate of
the rate of this convergence, that is, to estimate the size N of the sample for
which ∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ ε‖Σ‖ (1.1)

holds with high probability.
This question was investigated in [12] motivated by a problem of com-

plexity in computing volume in high dimension. In particular the authors
proved that

E
∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ C

n2

N
‖Σ‖,

where C = maxi≤N E|Xi|4/(E|Xi|2)2. Chebyshev’s inequality yields then a
first estimate: for any ε > 0, δ ∈ (0, 1),

P
(∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ ε‖Σ‖

)
≥ 1− δ (1.2)

whenever N ≥ C
εδ
n2.

When random vectors are standard Gaussian, the covariance matrix is
the identity and it is known (see the survey [8]) that (1.1) holds with high
probability whenever N ≥ 4n/ε2. This raises the question about the order
of the best N . In particular can it be proportional to n, under reasonable
assumptions? More precisely, the question in [12] was phrased in the following
setting.

Let K ⊂ Rn be a convex body and let X ∈ K be a random point
uniformly distributed on K. Suppose that X is centered at 0 and that the
covariance matrix of X is the identity of Rn. In such a case we shall say that
X (or K) is isotropic. Note that any convex body with non empty interior
has an affine isotropic image. In this setting and under these assumptions,
the question may be stated as follows:

Question: ([12]) Let K be an isotropic convex body in Rn. Given ε > 0,
how many independent points Xi uniformly distributed on K are needed for
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the empirical covariance matrix to approximate the identity up to ε with
overwhelming probability?

Our main aim in this paper is to answer this question. As it is well
known to specialists, a good framework for this kind of geometric probabilistic
questions is given by log-concave distribution (see below for the definition).
This is a stable and well structured class of measures in Rn that contains
uniform measure on convex bodies. Thus our goal is to estimate

P
(∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ ε‖Σ‖

)
(1.3)

where Σ is the covariance matrix of a centered random vector X ∈ Rn with
a log-concave distribution and (Xi) are N independent random vectors dis-
tributed as X.

Since for a symmetric matrix M , one has ‖M‖ = supy∈Sn−1〈My, y〉, (1.1)
is implied by

∣∣∣ 1

N

N∑
i=1

(〈Xi, y〉2 − E〈Xi, y〉2)
∣∣∣ ≤ ε〈Σy, y〉 for all y ∈ Rn. (1.4)

In the case when the covariance matrix is the identity, it is equivalent to

1− ε ≤ 1

N

N∑
i=1

〈Xi, y〉2 ≤ 1 + ε for all y ∈ Sn−1. (1.5)

Because of the linear invariance, there is no loss of generality to consider
just this case when the covariance matrix is the identity.

In this framework, a breakthrough was achieved in [7] where it was proved
that for any ε, δ ∈ (0, 1), there exists C(ε, δ) > 0 such that if a body K is
isotropic then N = C(ε, δ)n log3 n i.i.d. uniformly distributed points on K
satisfy (1.2). This estimate was further improved to N = C(ε, δ)n log2 n in
[23] and to N = C(ε, δ)n log n in [9] and [22]; the former paper treated the
case when K is invariant under every reflection with respect to coordinate
subspaces and the latter proved the estimate in full generality

One should note that in all these results, the probability in (1.2) does not
go to 1 as n goes to infinity, as one expects in this type of high dimensional
phenomena. This probability, 1 − δ, is given by a parameter δ and C(ε, δ)
depends on it. Thus letting δ tend to zero may destroy the estimate on N . To
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emphasize this important feature we will talk about overwhelming probability
if the probability goes to 1 as n goes to infinity.

The first result establishing (1.1) with overwhelming probability was given
in [18]. When a body K is invariant under every reflection with respect to
coordinate subspaces, it is proved in [2] that for any ε ∈ (0, 1) there exist
C(ε) > 0 such that (1.5) holds whenever N ≥ C(ε)n and with probability
going to 1 as n goes to infinity. Finally, the present paper shows, as a
consequence of our main results (Theorems 4.1 and 4.2), that the same is
true for an arbitrary body K (in the isotropic position).

An important related direction concerns norms of random matrices with
independent log-concave columns (or rows). More precisely, let X ∈ Rn

be a centered random vector with a log-concave distribution such that the
covariance matrix is the identity. Consider N independent random vectors
(Xi)i≤N distributed as X and define A = A(N) to be the n × N matrix
with (Xi)i≤N as columns. For n,N arbitrary (and N not too large, actually,
n = N being the central case) the question is to prove an estimate for the
norm ‖A‖ as an operator A : `N2 → `n2 , valid with overwhelming probability.
This problem can be viewed as an “isomorphic form” of an upper estimate in
(1.5) (for n = N , say), and the papers discussed above provided some answers
– with “parasitic” logarithmic factors – to this question as well. The present
article gives optimal estimates for ‖A‖ (in Theorem 3.6 and Corollaries 3.8
and 4.12); for example, for the square matrix if n = N , we have ‖A‖ ≤ C

√
n,

with overwhelming probability.

To observe a still one more point of view, for arbitrary n and N , consider
again A = A(N). The set of n × n matrices may be equipped with the
distribution of AA∗ to be a matrix probability space and because of the
analogy with Random Matrix Theory, in particular with Wishart Ensemble,
let us call it a Log-concave Ensemble.

In the last decades, in Asymptotic Geometric Analysis, considerable work
and progress have been achieved in understanding the properties of random
vectors with log-concave distribution, and more recently, in understanding
spectral properties of random matrices with independent rows (or columns)
with log-concave distribution. It appears that in high dimension they behave
somewhat similarly as if the coordinate would be independent. This leads by
analogy with Random Matrix Theory to questions on the spectrum of AA∗

similar to those of the Wishart Ensemble. One important difference is that
now the entries are dependent but strongly structured by the log-concavity
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hypothesis.
Denote by λ1 = λ1(A

(N)) ≤ · · · ≤ λn = λn(A(N)) the eigenvalues of AA∗

(the squares of the singular values of A). It was proved in [21] that when
n/N goes to β ∈ (0, 1) as n,N → ∞, then the empirical measures of the
eigenvalues have a limit. It is the so-called Marchenko-Pastur distribution,
as for the Wishart Ensemble when all entries of the matrix A are i.i.d. It is
also known ([4]) in the case when all the entries of A are i.i.d. (with a finite
fourth moment) and limn→+∞

n
N

= β ∈ (0, 1) that limλ1/N = (1 −
√
β)2

and limλn/N = (1 +
√
β)2. One could conjecture that such results are also

valid in the log-concave setting. Nevertheless, these results are asymptotic
and not quantitative (given fixed dimension).

Problem (1.5) is of course equivalent to quantitative estimates for λ1(A
(N))

and λn(A(N)), that is of the support of the spectrum of A. An answer is given
by Proposition 4.4 where it is shown that for n ≤ N ≤ exp(

√
n),

1−C
√
n

N
log

2N

n
≤ 1

N

N∑
i=1

〈Xi, y〉2 ≤ 1 +C

√
n

N
log

2N

n
for all y ∈ Sn−1

holds with probability larger than 1 − exp(−c
√
n), where C, c > 0 are nu-

merical constants. Thus, putting β = n
N
∈ (0, 1), we get

1− C
√
β log (2/β) ≤ λ1

N
≤ λn
N
≤ 1 + C

√
β log (2/β)

with overwhelming probability. As a consequence already mentioned earlier,
‖A‖ ≤ C(

√
N +

√
n) with overwhelming probability, where C > 0 is a

numerical constant (Corollary 4.12).

Our general method follows an approach that can be traced back to Bour-
gain [7] (cf. also [10]). It relies upon a crucial new ingredient of a novel
chaining argument that in an essential way depends on the distribution of
coordinates of a point on the unit sphere. What makes this approach work,
by rather subtle estimates, is a special structure of the sets used for the
chaining.

To describe a very rough idea of this structure, involved in the proof of
Theorem 3.6 below, assume for simplicity that m = n = 2s and let ak = 2s−k

for 1 ≤ k ≤ s. For each k, first consider the subset of the Euclidean unit
ball in RN of all vectors that have the support of cardinality less than or
equal to ak and with the `∞ norm of the coordinates bounded by αk, and
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then define M(k) to be a preassigned εk net (in the Euclidean norm) of this
set, where 0 < αk, εk < 1 are judiciously fixed in advance. Using sets M(k)

in successive steps of chaining we arrive to the set M that consists of sums
v =

∑
k vk where vk’s are mutually disjointly supported vectors from M(k)

(assuming that the Euclidean norm of v is less than 2). As can be expected
the actual definition of M contains a number of delicate points which were
omitted here and can be found at the beginning of the proof of Theorem 3.6.
However it is given in just one step without discussing each individual step
of the chaining.

The paper is organized as follows. In the next Section 2 we present
some definitions and preliminary tools. In Section 3 we study the norm of a
restriction of the matrix A = A(N) defined by

Am = sup
F⊂{1,...,N}

|F |≤m

‖A|RF ‖ = sup
z∈SN−1

| supp z|≤m

|Az|.

We show in Theorem 3.6 that with overwhelming probability,

Am ≤ C

(√
n+

√
m log

2N

m

)
.

In Section 4.1 we prove the result announced in the abstract, answering a
question from [12]. This theorem appears as a particular case of a more
general study of

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(〈Xi, y〉p − E〈Xi, y〉p)
∣∣∣

defined for any p ≥ 1. Such processes have been studied in [10], [11] and [17].
Section 4.2 describes several observations for norms of random matrices

from `2 to `p, p 6= 2. In the final Section 4.3 we sketch a more elementary
proof of the main result of Section 4.1, when p = 2.

2 Notation and preliminaries

We equip Rn and RN with the natural scalar product 〈 ·, ·〉 and the natural
Euclidean norm | · |. We also denote by the same notation | · | the cardinality
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of a set. In this paper, X will denote a random vector in Rn and (Xi)
will be independent random vectors with the same distribution as X. By
Id we shall denote the identity on Rn and by Σ = Σ(X) = EX ⊗ X, the
covariance matrix of X (here X ⊗ X is the rank one operator defined by
X ⊗X(y) = 〈X, y〉X, for all y ∈ Rn). By ‖M‖ we shall denote the operator
norm of a matrix M , that is ‖M‖ = sup|y|=1 |My|.

Definition 2.1. A random vector X ∈ Rn is called isotropic if

E〈X, y〉 = 0, E |〈X, y〉|2 = |y|2 for all y ∈ Rn, (2.1)

in other words, if X is centered and its covariance matrix is the identity:

EX ⊗X = Id .

Recall that a function f : Rn → R is called log-concave if for any θ ∈ [0, 1]
and any x1, x2 ∈ Rn,

f
(
θx1 + (1− θ)x2

)
≥ f(x1)

θf(x2)
1−θ.

Definition 2.2. A measure µ on Rn is log-concave if for any measurable
subsets A,B of Rn and any θ ∈ [0, 1],

µ(θA+ (1− θ)B) ≥ µ(A)θµ(B)(1−θ)

whenever the set

θA+ (1− θ)B = {θx1 + (1− θ)x2 : x1 ∈ A, x2 ∈ B}

is measurable.

The Brunn-Minkowski inequality provides examples of log-concave mea-
sures, that are the uniform Lebesgue measure on compact convex subsets of
Rn as well as their marginals (cf. e.g., [24]). More generally, Borell’s the-
orem [5] characterizes the log-concave measures that are not supported by
any hyperplane as the absolutely continuous measures (with respect to the
Lebesgue measure) with a log-concave density. Note that the distribution
of an isotropic vector is not supported by any hyperplane. Moreover, it is
known [6] that if a measure is log-concave then linear functionals exhibit a
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sub-exponential decay. To be more precise, recall that for a random variable
Y , the ψ1 norm of Y is

‖Y ‖ψ1 = inf

{
C > 0 ; E exp

(
|Y |
C

)
≤ 2

}
.

A straightforward computation shows that for every integer p ≥ 1,

(E|Y |p)1/p ≤ cp‖Y ‖ψ1 (2.2)

where c is an absolute constant.
We can now state the sub-exponential decay of linear functionals in terms

of ψ1 norm [6]:

Lemma 2.3. Let X ∈ Rn be a centered random vector with a log-concave
distribution. Then for every y ∈ Sn−1,

‖ 〈X, y〉 ‖ψ1 ≤ ψ (E|〈X, y〉|2)1/2

where ψ > 0 is universal constant. Moreover, if X has a symmetric distri-
bution then ψ = 2.

The moreover part easily follows by a direct calculation (see [20]).
Putting together (2.2) and Lemma 2.3, we get that for every y ∈ Sn−1,

(E| 〈X, y〉 |p)1/p ≤ Cp (E|〈X, y〉|2)1/2 (2.3)

where C is an absolute positive constant.

3 Norm of a random matrix

In this Section X1, . . . , XN are independent random vectors in Rn. Mostly we
work with i.i.d. random vectors, distributed according to an isotropic, log-
concave probability measure on Rn. Random n × N matrix whose columns
are Xi’s is denoted by A and its operator norm from `N2 to `n2 is denoted by
‖A‖. We will also use the following related notation, for 1 ≤ m ≤ N ,

Am = sup
F⊂{1,...,N}

|F |≤m

‖A|RF ‖ = sup
z∈SN−1

| supp z|≤m

|Az|.

Note that Am is increasing in m. Given a set E ⊂ {1, ..., N} by PE we denote
the orthogonal projection from RN onto coordinate subspace of vectors whose
support is in E. Such a subspace is denoted by RE.
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Lemma 3.1. Let X1, . . . , XN be i.i.d. random vectors, distributed accord-
ing to an isotropic, log-concave probability measure on Rn. There exists an
absolute positive constant C0 such that for any N ≤ exp(

√
n) and for every

K ≥ 1 one has
max
i≤N

|Xi| ≤ C0K
√
n

with probability at least 1− exp(−K
√
n).

Proof By [22] we have for every i ≤ N

P
{
|Xi| ≥ Ct

√
n
}
≤ exp(−tc

√
n),

where C and c are absolute positive constants. The result follows by the
union bound (and adjusting absolute constants). 2

Lemma 3.2. Let x1, . . . , xN ∈ Rn. There exists a set E ⊂ {1, ..., N}, such
that ∑

i6=j

〈xi, xj〉 ≤ 4
∑
i∈E

∑
j∈Ec

〈xi, xj〉 .

Proof Clearly one has

2N−2
∑
i6=j

〈xi, xj〉 =
∑

E⊂{1,...,N}

∑
i∈E

∑
j∈Ec

〈xi, xj〉 ≤ 2N max
E⊂{1,...,N}

∑
i∈E

∑
j∈Ec

〈xi, xj〉

from which the lemma follows. 2

Now, given a E ⊂ {1, ..., N}, ε, α ∈ (0, 1], by N (E, ε, α) we denote an
ε-net of BN

2 ∩αBN
∞∩RE in the Euclidean metric. Standard volume estimate

shows that we may assume that the cardinality of N (E, ε, α) does not exceed
(3/ε)m, where m is the cardinality of E.

We will need the following two lemmas.

Lemma 3.3. Let X1, . . . , XN be independent random vectors in Rn and let
ψ > 0 such that

sup
i≤N

sup
y∈Sn−1

‖ 〈Xi, y〉 ‖ψ1 ≤ ψ.

Let m ≤ N , ε, α ∈ (0, 1] and L ≥ 2m log 12eN
mε

. Then

P

 sup
F⊂{1,...,N}

|F |≤m

sup
E⊂F

sup
z∈N (F,ε,α)

∑
i∈E

∣∣∣∣∣∣
〈
ziXi,

∑
j∈F\E

zjXj

〉∣∣∣∣∣∣ > ψ αLAm

 ≤ e−L/2.
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Proof Denote the underlying probability space by Ω. For F ⊂ {1, ..., N}
with |F | ≤ m, E ⊂ F , and z ∈ N (F, ε, α), define the subset Ω(F,E, z) of Ω
by

Ω(F,E, z) =

∑
i∈E

∣∣∣∣∣∣
〈
ziXi,

∑
j∈F\E

zjXj

〉∣∣∣∣∣∣ > ψαLAm

 .

Fix F , E and z as above and set y =
∑

j∈F\E zjXj. Clearly, y is independent

of vectors Xi’s, i ∈ E, and |y| ≤ Am. Note that |y| > 0 on Ω(F,E, z)
(otherwise 〈ziXi, y〉 = 0 for all i ∈ E and the sharp inequality defining
Ω(F,E, z) would be violated). Thus, using the fact that ‖z‖∞ ≤ α, we
obtain ∑

i∈E

∣∣∣∣∣∣
〈
ziXi,

∑
j∈F\E

zjXj

〉∣∣∣∣∣∣ ≤ αAm
∑
i∈E

|〈Xi, y/|y|〉| ,

on Ω(F,E, z). Since Am > 0 on Ω(F,E, z), this implies

P (Ω(F,E, z)) ≤ P

(∑
i∈E

|〈Xi, y/|y|〉| > ψL

)
.

On the other hand, by Chebyshev’s inequality and the assumption on the
ψ1-norms of linear functionals, the latter probability is less than

e−L E exp

(∑
i∈E

|〈Xi, y/|y|〉|
ψ

)
≤ 2|E| e−L ≤ 2m e−L.

Therefore by the union bound,

P

 sup
F⊂{1,...,N}

|F |≤m

sup
E⊂F

sup
z∈N (F,ε,α)

∑
i∈E

∣∣∣∣∣∣
〈
ziXi,

∑
j∈F\E

zjXj

〉∣∣∣∣∣∣ > ψ αLAm


≤

m∑
k=1

(
N

k

)
2m

(
3

ε

)m
sup
F,E,z

P (Ω(F,E, z))

≤
m∑
k=1

(
N

k

)
2m

(
3

ε

)m
2m e−L ≤

(
eN

m

)m (
12

ε

)m
e−L

= exp

(
m log

12eN

mε
− L

)
,
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which implies the result. 2

We will also need another lemma of a similar type. We provide the proof
for sake of completeness.

Lemma 3.4. Let X1, . . . , XN be independent random vectors in Rn and let
ψ > 0 such that

sup
i≤N

sup
y∈Sn−1

‖ 〈Xi, y〉 ‖ψ1 ≤ ψ.

Let 1 ≤ k,m ≤ N , ε, α ∈ (0, 1], β > 0, and L > 0. Let B(m,β) denote the
set of vectors x ∈ βBN

2 with | supp x| ≤ m and let B be a subset of B(m,β)
of cardinality M . Then

P

 sup
F⊂{1,...,N}

|F |≤k

sup
x∈B

sup
z∈N (F,ε,α)

∑
i∈F

∣∣∣∣∣
〈
ziXi,

∑
j 6∈F

xjXj

〉∣∣∣∣∣ > ψαβLAm

)

≤ M

(
6eN

kε

)k
e−L.

Proof The proof is analogous to the argument in Lemma 3.3. For F ⊂
{1, ..., N} with |F | ≤ k, x ∈ B, and z ∈ N (F, ε, α) consider

Ω(F, x, z) =

{∑
i∈F

∣∣∣∣∣
〈
ziXi,

∑
j 6∈F

xjXj

〉∣∣∣∣∣ > ψαβLAm

}
.

Fix F , x, z as above and set y =
∑

j 6∈F xjXj. Clearly, y is independent
of the vectors Xi’s, i ∈ F , moreover, |y| ≤ βAm, and, similarly as in before,
|y| > 0 on Ω(F, x, z). Thus, using the fact that ‖z‖∞ ≤ α, we obtain

∑
i∈F

∣∣∣∣∣
〈
ziXi,

∑
j 6∈F

xjXj

〉∣∣∣∣∣ ≤ αβAm
∑
i∈F

|〈Xi, y/|y|〉| ,

on Ω(F, x, z). Therefore, again as in Lemma 3.3, we have

P (Ω(F, x, z)) ≤ P

(∑
i∈F

|〈Xi, y/|y|〉| > ψL

)

≤ e−L E exp

(∑
i∈F

|〈Xi, y/|y|〉|
ψ

)
≤ 2|F | e−L ≤ 2k e−L.
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By the union bound we get

P

 sup
F⊂{1,...,N}

|F |≤k

sup
x∈B

sup
z∈N (F,ε,α)

∑
i∈F

∣∣∣∣∣
〈
ziXi,

∑
j 6∈F

xjXj

〉∣∣∣∣∣ > ψαβLAm


≤ M

k∑
l=1

(
N

l

) (
3

ε

)k
2k e−L ≤M

(
eN

k

)k (
6

ε

)k
e−L,

which proves the result. 2

Remark 3.5. Observe that if Xi’s are i.i.d. random vectors, distributed
according to an isotropic, log-concave probability measure on Rn, then, by
Lemma 2.3, they satisfy the condition for the ψ1-norm of Lemmas 3.3 and
3.4.

Theorem 3.6. Let n ≥ 1 and 1 ≤ N ≤ e
√
n be integers. Let X1, . . . , XN

are i.i.d. random vectors, distributed according to an isotropic, log-concave
probability measure on Rn. Let K ≥ 1. Then there are absolute positive
constants C and c such that

P
(
∃m ≤ N : Am ≥ CK

(√
n+

√
m log

2N

m

))
≤ exp

(
−cK

√
n
)
.

Remark 3.7. Let X ∈ Rn be a random vector with an isotropic expo-
nential distribution, that is with the density defined for x = (xi) ∈ Rn by∏n

1
1√
2

exp(−
√

2|xi|). It is clearly an isotropic vector with a log-concave dis-

tribution. Consider now the matrix A(N) build as before from a sample of X
of size N . Since

P(|X| ≥ t
√
n) ≥

∫
|s|≥t

√
n

1√
2

exp(−
√

2|s|) ds = exp(−
√

2t
√
n)

we get that for any 1 ≤ m ≤ N ,

P(Am ≥ t
√
n) ≥ exp(−

√
2t
√
n).

This shows that the probability estimate in Theorem 3.6 is optimal up to
numerical constants. The analysis of this example shows that up to numerical
constants the logarithmic term in the estimate of Am in Theorem 3.6 is also
optimal (for the details see [1]).
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Letting m = N we get a clearly optimal estimate for the operator norm
‖A‖, valid with overwhelming probability.

Corollary 3.8. In the setting of Theorem 3.6 we get, for every K ≥ 1,

‖A‖ ≤ CK
(√

n+
√
N
)
, (3.1)

with probability at least 1− e−cK
√
n, where C, c > 0 are absolute constants.

Remark 3.9. The final remark of [7] states that by refining a bit the method
of proof of Lemma 2 of that paper one may obtain that if X1, . . . , Xn are n
independent vectors in Rn distributed according to a probability measure µ
on Rn satisfying ‖〈x, y〉‖ψ1 < 1/

√
n for all y ∈ Sn−1, then, with probability

1− δ, the matrix A admits the bound for the operator norm

‖A‖ ≤ C(δ)

(∫ (
max
1≤i≤n

|Xi|
)
dµ+ 1

)
.

By Lemmas 2.3 and 3.1, and taking into account the normalization, this
would imply a version of (3.1) with N = n and probability 1− δ.

Remark 3.10. Note that
√
n +

√
m log 2N

m
in the formula in Theorem 3.6

can be substituted with

√
n+

√
m log

2N

max{n,m}
.

Indeed, if m ≥ n there is nothing to prove, otherwise

√
n+

√
m log

2N

m
=
√
n+

√
m log

n

m
+
√
m log

2N

n
≤ 2

√
n+

√
m log

2N

n
.

Finally, another immediate consequence.

Corollary 3.11. There are absolute positive constants C and c such that for
every n ≥ 1, 1 ≤ N ≤ e

√
n, K ≥ 1, and Xi’s as in Theorem 3.6 one has

P

(
∃E⊂{1,...,N}

∣∣∣∣∣∑
i∈E

Xi

∣∣∣∣∣ ≥ CK

(√
n|E|+ |E| log

2N

n

))
≤ exp

(
−cK

√
n
)
.

13



Proof Given E set m = |E|. Consider vector z ∈ SN−1 defined by zi =
1/
√
m if i ∈ E and zi = 0 otherwise. We have∣∣∣∣∣∑

i∈E

Xi

∣∣∣∣∣ =
√
m|Az| ≤

√
mAm.

Therefore Theorem 3.6 and Remark 3.7 imply the result. 2

Proof of Theorem 3.6. As N ≤ e
√
n, it is easy to see, by applying the

union bound and adjusting absolute constants, that it is sufficient to prove
that for K sufficiently large and every fixed m ≤ N , one has

P
(
Am ≥ CK

(√
n+

√
m log

2N

m

))
≤ exp

(
−cK

√
n
)
.

We shall define a set M of vectors with a special structure and supports
less than or equal to m which serves simultaneously two purposes: we will
be able to estimate with large probability supx∈M |Ax|, and we will use M
to approximate an arbitrary vector from BN

2 of support less than or equal to
m. Then a standard argument will lead to the required estimate for Am.

First observe that if for a vector x ∈ SN−1 there is a simultaneous control
of the size of support and its `∞-norm (more precisely, | supp x| ∼ s and
‖x‖∞ ≤ s−1/2, for some s ≥ 1) then |Ax| can be estimated, with large
probability, directly by using Lemmas 3.2 and 3.3 (it is also a part of the
estimates below). It is therefore natural to expect vectors from M to be
sums of (disjointly supported) vectors admitting such a simultaneous control
as above. Formally, the definition of M splits into two cases. If

m log
48eN

m
≤
√
n, (3.2)

we set
M =

⋃
E⊂{1,...N}
|E|=m

N (E, 1/4, 1).

Otherwise, let l be the smallest integer such that

m

2l
log

48e2lN

m
≤
√
n, (3.3)

14



and fix positive integers a0, a1, . . . , al such that ak ≤ m 2−k+1 for 1 ≤ k ≤ l
and a0 ≤ m 2−l, and

∑l
k=0 ak = m. (We shall later set ak := [m 2−k+1] −

[m 2−k] for 1 ≤ k ≤ l and a0 := [m 2−l].)

Then set M = M0 ∩ 2BN
2 , where M0 consists of all vectors of the form

x =
∑l

k=0 xk, where xi’s have disjoint supports and

x0 ∈
⋃

E⊂{1,...N}
|E|≤a0

N (E, 1/4, 1), xk ∈
⋃

E⊂{1,...N}
|E|≤ak

N

(
E, 2−k,

√
2k

m

)
for 1 ≤ k ≤ l.

Note that for every vector x ∈ M we have | supp x| ≤
∑l

0 ak = m and
|x| ≤ 2.

We shall consider the details of the case m log(48eN/m) >
√
n (the other

case, when (3.2) holds, can be treated similarly, actually, it is even simpler,
since the construction of M is simpler). Fix x ∈M of the form x =

∑l
k=0 xk

and let Fk be the support of xk (if there are more than one such represen-
tations, we fix one of them). Denote the coordinates of x by x(i), i ≤ N ,
then

|Ax|2 =

〈∑
i≤N

x(i)Xi,
∑
i≤N

x(i)Xi

〉
=
∑
i≤N

x(i)2|Xi|2 +
∑
i6=j

〈x(i)Xi, x(j)Xj〉

≤ 2 max
i
|Xi|2 +Dx ≤ 2 max{2 max

i
|Xi|2, Dx}, (3.4)

where
Dx =

∑
i6=j

〈x(i)Xi, x(j)Xj〉 .

Note that by Lemma 3.1, maxi |Xi| ≤ C0K
√
n with probability larger than

1− e−K
√
n, and we would like to get a similar estimate for Dx.

To this aim we split Dx according to the structure of x. Namely we let

D′
x :=

l∑
k=0

∑
i,j∈Fk

i6=j

〈x(i)Xi, x(j)Xj〉 ,

15



and

D′′
x : =

l∑
k=0

∑
i∈Fk
j 6∈Fk

〈x(i)Xi, x(j)Xj〉

= 2
l∑

k=1

∑
i∈Fk

∑
r∈Gk

〈
x(i)Xi,

∑
j∈Fr

x(j)Xj

〉
,

where Gk = {0, k + 1, k + 2, . . . , l}. Note that

Dx = D′
x +D′′

x.

We first estimate D′
x. By Lemma 3.2 we obtain that for every k there

exists a subset F̄k of Fk such that

D′
x ≤ 4

l∑
k=0

∑
i∈F̄k

j∈Fk\F̄k

〈x(i)Xi, x(j)Xj〉

≤ 4 sup
F⊂{1,...,N}
|F |≤m/2l

sup
E⊂F

sup
v∈N (F,1/4,1)

∑
i∈E

∣∣∣∣∣∣
〈
viXi,

∑
j∈F\E

vjXj

〉∣∣∣∣∣∣
+ 4

l∑
k=1

sup
F⊂{1,...,N}
|F |≤2m/2k

sup
E⊂F

sup
v∈N (F,2−k,

√
2k/m)

∑
i∈E

∣∣∣∣∣∣
〈
viXi,

∑
j∈F\E

vjXj

〉∣∣∣∣∣∣ .
We now apply Lemma 3.3 to each summand in the sum above with L =
2K

√
n, ε = 1/4, α = 1 for the first summand (note that such an L satisfies

the condition) and with L = 4m
2k K log 12eN4k

m
, ε = 2−k, α =

√
2k

m
for k ≥ 1.

By the union bound we obtain

P

(
sup
x∈M

D′
x > 8ψKAm

√
n+ 2ψKAm

l∑
k=1

√
2k

m

8m

2k
log

12eN4k

m

)

≤ exp
(
−K

√
n
)

+
l∑

k=1

exp

(
−K 2m

2k
log

12eN4k

m

)
≤ exp

(
−K

√
n
)

+ l exp

(
−K 2m

2l
log

12eN4l

m

)
,
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where ψ is the absolute constant from Lemma 2.3.
Therefore, the choice of l implies the following bound, with some absolute

positive constant C,

P
(

sup
x∈M

D′
x > AmK

(
8ψ
√
n+ Cψ

√
m log

2N

m

))
≤ exp

(
−K

√
n
)

+ l exp
(
−K

√
n
)
≤ (2

√
n+ 1) exp

(
−K

√
n
)
.

(We also used the estimate l ≤ 2
√
n, valid when m ≤ N ≤ e

√
n.)

The estimate for D′′
x essentially follows the same lines. In a sense it is

simpler, since we don’t need to apply Lemma 3.2. For every 1 ≤ k ≤ l we
consider Mk = M′

k ∩ 2BN
2 , where M′

k consists of all vectors of the form

x = x0 +
∑l

s=k+1 xs, where xi’s (i = 0, k = 1, . . . , l) have pairwise disjoint
supports and

x0 ∈
⋃

E⊂{1,...N}
|E|≤a0

N (E, 1/4, 1), xs ∈
⋃

E⊂{1,...N}
|E|≤as

N

(
E, 2−s,

√
2s

m

)
for s ≥ k + 1.

Then Mk ⊂ 2BN
2 and

|Mk| ≤ 12a0

l∏
s=k+1

(3 · 2s)as

(
N

as

)
≤ 12a0

l∏
s=k+1

(
3 · 2seN
as

)as

≤ exp

(
m

2l
log 12 +

l∑
s=k+1

2m

2s
log

3e4sN

2m

)
≤ exp

(
l+1∑

s=k+1

2m

2s
log

3e4sN

2m

)

≤ exp

(
m

2k

(
log

6e4kN

m

l−k∑
s=0

1

2s
+ log 4

l−k∑
s=1

s

2s

))
≤ exp

(
4m

2k
log

6e4kN

m

)
.

We also observe that

D′′
x = 2

l∑
k=1

∑
i∈Fk

〈
x(i)Xi,

∑
r∈Gk

∑
j∈Fr

x(j)Xj

〉

≤ 2
l∑

k=1

sup
F⊂{1,...,N}
|F |≤2m/2k

sup
u∈N (F,2−k,

√
2k/m)

sup
v∈Mk

∑
i∈F

∣∣∣∣∣
〈
uiXi,

∑
j 6∈F

vjXj

〉∣∣∣∣∣ .
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Now we apply Lemma 3.4 to each summand with

L = L(k) =
12m

2k
K log

12e4kN

m
,

ε = εk = 2−k, α = αk =
√

2k/m, β = 2, B = Bk = Mk.

Using the union bound we obtain

P

(
D′′
x > 48ψAmK

l∑
k=1

√
2k

m

m

2k
log

12e4kN

m

)

≤
l∑

k=1

exp

(
4m

2k
log

12e4kN

m
+

2m

2k
log

3e4kN

m
−K

12m

2k
log

12e4kN

m

)

≤
l∑

k=1

exp

(
−K 6m

2k
log

12e4kN

m

)
≤ l exp

(
−K 6m

2l
log

12e4lN

m

)
.

As in the case for D′
x it follows that

P
(

sup
x∈M

D′′
x > 3CψAmK

√
m log

2N

m

)
≤ 2

√
n exp

(
−K

√
n
)
,

where C is the same absolute constant as above. Since Dx = D′
x +D′′

x, then

P
(

sup
x∈M

Dx > KAm

(
8ψ
√
n+ 4Cψ

√
m log

2N

m

))
≤ (4

√
n+1)e−K

√
n. (3.5)

Passing now to the approximation argument, pick an arbitrary z ∈ SN−1

with | supp z| ≤ m. Define the following subsets of {1, . . . , N} depending
on z. Denote the coordinates of z by zi (i = 1, . . . , N). Let n1, . . . , nN be
such that |zn1| ≥ |zn2| ≥ . . . ≥ |znN

|, so that zni
= 0 for i > m (since

| supp z| ≤ m). If condition (3.2) holds we denote the support of z by E0 and
consider only this E0. Otherwise we set

E0 = {ni}1≤i≤m/2l

and

E1 = {ni}m/2<i≤m, E2 = {ni}m/4<i≤m/2, . . . , El = {ni}m/2l<i≤m/2l−1 ,
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where l is the smallest integer satisfying (3.3) (as before). (For small values
of n it can happen that E0 is empty, but it does not create any difficulty in
the proof below.) Clearly, we have

a0 := |E0| ≤ m/2l, ak := |Ek| ≤ m/2k + 1 ≤ m/2k−1 for every 1 ≤ k ≤ l,

and
∑l

i=0 ai = m. Note that the numbers ak’s do not depend on z, although
the sets Ek’s do. Finally, since z ∈ SN−1, we also observe that for every
k ≥ 1,

‖PEk
z‖∞ ≤ |zns | ≤

√
2k

m
,

where s = [m/2k].
Note that for every k ≥ 1 the vector PEk

z can be approximated by a

vector from N
(
Ek, 2

−k,
√

2k

m

)
and the vector PE0z can be approximated

by a vector from N (E0, 1/4, 1). Thus there exists x ∈ M, with a suitable
representation x =

∑l
k=0 xk, such that

|z − x|2 ≤
l∑

k=0

|PEk
z − xk|2 ≤ 2−4 +

l∑
k=1

2−2k < 0.4.

Moreover, x is chosen to have the same support as z, and thus w = z − x
has the support | suppw| ≤ m.

Considering all z ∈ SN−1 with | supp z| ≤ m it follows that

Am = sup
z∈SN−1

| supp z|≤m

|Az| ≤ sup
x∈M

|Ax|+
√

0.4 sup
w∈SN−1

| supp w|≤m

|Aw| = sup
x∈M

|Ax|+
√

0.4Am,

which implies
Am ≤ 3 sup

x∈M
|Ax|.

Recall that by (3.4) for every x ∈M we have

|Ax|2 ≤ 2 max{2 max
i
|Xi|2, Dx},

so passing to the supremum

A2
m ≤ 9 sup

x∈M
|Ax|2 ≤ 9 max{4 max

i
|Xi|2, 2 sup

x∈M
Dx}. (3.6)
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Applying Lemma 3.1 and (3.5) we get

Am ≤ K (6C0 + 144ψ)
√
n+ 72CψK

√
m log

2N

m

with probability larger than

1− (4
√
n+ 2) exp

(
−K

√
n
)
≥ 1− exp

(
−cK

√
n
)
,

where c is an absolute positive constant. (In fact this estimate for probability
requires that n is sufficiently large, but, as K ≥ 1 was arbitrary, we can adjust
the constants.) This concludes the proof. 2

Remark 3.12. Consider now a more general situation in whichX1, X2, . . . XN

– the columns of the matrix A – are still i.i.d. centered and log-concave, but
not necessarily isotropic. Then there exists an n × n matrix T , such that
(Xi)

N
i=1 has the same distribution as (TYi)

N
i=1, where Y1, . . . , YN are isotropic

log-concave random vectors in Rn. For the purpose of computing probabil-
ities we may assume that Xi = TYi. Therefore, with probability at least
1− exp(−cK

√
n), we have for all m ≤ N ,

Am = sup
y∈Sn−1

sup
z∈SN−1

| supp z|≤m

∣∣∣ N∑
i=1

〈Xizi, y〉
∣∣∣ = sup

y∈Sn−1

sup
z∈SN−1

| supp z|≤m

∣∣∣ N∑
i=1

〈Yizi, T ∗y〉
∣∣∣

≤ ‖T ∗‖CK
(√

n+
√
m log

2N

m

)
= CKκ

(√
n+

√
m log

2N

m

)
,

where κ = ‖T ∗‖ =
√
‖Σ‖ (note that Σ = TT ∗).

We conclude this section with a more technical variant of Theorem 3.6.
Note that in particular it requires weaker conditions on Xi’s and does not
require any bounds on N .

Theorem 3.13. Let 1 ≤ n and 1 ≤ N . Let X1, . . . , XN be independent
random vectors in Rn such that

sup
i≤N

sup
y∈Sn−1

‖ 〈Xi, y〉 ‖ψ1 ≤ ψ.
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Let A be a random n×N matrix whose columns are Xi’s, and Am, m ≤ N ,
is defined as before. Then for every 1 ≤ m ≤ N , every 0 ≤ l ≤ logm, and
every K ≥ 1 one has

P
(
Am ≥ CψK

(
m

2l
log

48eN2l

m
+
√
m log

2N

m

)
+ 6 max

i≤N
|Xi|

)

≤ (1 + 2l) exp

(
−2K

m

2l
log

12eN2l

m

)
,

where C is an absolute constant. In particular, choosing 0 ≤ l ≤ logm to be
the largest integer satisfying

2m

2l
log

12eN2l

m
≥
√
m log

2N

m

we obtain that for every K ≥ 1

P
(
Am ≥ CψK

√
m log

2N

m
+ 6 max

i≤N
|Xi|

)
≤ (1+2 logm) exp

(
−K

√
m log

2N

m

)
.

Remark 3.14. Note that from the definitions we immediately have

Am ≥ A1 ≥ max
i≤N

|Xi|.

For completeness we outline a proof of Theorem 3.13.

Proof (Sketch.) We proceed as in the proof of Theorem 3.6. So first we
construct M. If l = 0 we define M exactly as after formula (3.2), otherwise
it will be constructed in the same way as it was constructed after formula
(3.3) (note that now l is a fixed number). Then we estimate Dx = D′

x +D′′
x.

As before we use Lemmas 3.3 and 3.4.
The only difference is that for the first summand in the formula for D′

x

we use Lemma 3.3 with L = 4Km
2l log 48eN2l

m
instead of L = 2K

√
n. It will

give us that

P
(

sup
x∈M

D′
x > 16AmKψ

m

2l
log

48eN2l

m
+ CAmKψ

√
m log

2N

m

)
≤ exp

(
−2K

m

2l
log

48eN2l

m

)
+ l exp

(
−2K

m

2l
log

12eN4l

m

)
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and

P
(

sup
x∈M

D′′
x > 3CψAmK

√
m log

2N

m

)
≤ l exp

(
−K 6m

2l
log

12e4lN

m

)
.

Thus, with another absolute positive constant C we have

P
(

sup
x∈M

Dx > CAmKψ

(
m

2l
log

48eN2l

m
+
√
m log

2N

m

))
≤ (1 + 2l) exp

(
−K 2m

2l
log

12eN2l

m

)
.

Finally we apply the same approximation procedure. By (3.4) and ap-
proximation we get formula (3.6)

A2
m ≤ max{36 max

i
|Xi|2, 18 sup

x∈M
Dx},

which implies the result, by adjusting constants, if necessary. The “in par-
ticular” part of the Theorem is trivial. 2

Remark 3.15. It is possible to extend Theorem 3.13 to a ψp-setting, similar
to the one considered in [10]. Let p ∈ [1, 2] and let X be a random vector
such that for some ψp > 0 one has

E exp ((|〈X, y〉|/ψp)p) ≤ 2

for every y ∈ Sn−1. Then, adjusting Lemmas 3.3 and 3.4, and repeating the
proof of Theorem 3.13 we can get

P

(
Am ≥ CψpK

√
m

(
log

2N

m

)1/p

+ 6 max
i≤N

|Xi|

)

≤ (1 + 2 logm) exp

(
−Kp

√
m log

2N

m

)
.

However we will not pursue this direction here.
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4 Kannan-Lovász-Simonovits question

In this section, we answer the question presented in the introduction: Let
K be an isotropic convex body in Rn. Given ε > 0, how many independent
points Xi uniformly distributed on K are needed for the empirical covariance
matrix to approximate the identity up to ε with overwhelming probability?

Let X ∈ Rn be a centered random vector with covariance matrix Σ and
consider N independent random vectors (Xi)i≤N distributed as X. Using em-
pirical processes tools, we first prove a more general statement (Proposition
4.4) and then give applications to approximation of the empirical covariance
matrix and to estimates of different norms of the matrix A = A(N). In a
final subsection we give a more elementary proof of the case (p = 2) that
corresponds to the original question in [12].

4.1 Approximation of covariance matrix

First note that because of the linear invariance, (1.5) implies∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Σ
∥∥∥ ≤ ε‖Σ‖.

Therefore without loss of generality we restrict ourselves to the case when
the covariance matrix is the identity.

Theorem 4.1. Let X1, . . . , XN be i.i.d. random vectors, distributed ac-
cording to an isotropic, log-concave probability measure on Rn. For every
ε ∈ (0, 1) and t ≥ 1, there exists C(ε, t) > 0, such that if C(ε, t)n ≤ N , then
with probability at least 1− e−ct

√
n,∥∥∥ 1

N

N∑
i=1

Xi ⊗Xi − Id
∥∥∥ ≤ ε, (4.1)

where c > 0 is an absolute constant. Moreover, one can take C(ε, t) =
Ct4ε−2 log2(2t2ε−2), where C > 0 is an absolute constant.

Since for a symmetric matrix M , one has ‖M‖ = supy∈Sn−1〈My, y〉 and
E〈Xi, y〉2 = |y|2, one can rewrite (4.1) as

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(〈Xi, y〉2 − E〈Xi, y〉2)
∣∣∣ ≤ ε.
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This way approximating the covariance matrix becomes a special case
of a more general problem, concerning the uniform approximation of the
moments of one dimensional marginals of an isotropic log-concave measure
by their empirical counterparts. In particular, Theorem 4.1 is implied by the
following result.

Theorem 4.2. Let X1, . . . , XN be i.i.d. random vectors, distributed accord-
ing to an isotropic, log-concave probability measure on Rn. For any p ≥ 2
and for every ε ∈ (0, 1) and t ≥ 1, there exists C(ε, t, p) > 0, such that if
C(ε, t, p)np/2 ≤ N , then with probability at least 1 − e−cpt

√
n (where cp > 0

depends only on p),

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣ ≤ ε. (4.2)

Moreover, one can take C(ε, t, p) = Cpt
2pε−2 log2p−2(2t2ε−2), where Cp de-

pends only on p.

Remark 4.3. Proofs of both Theorems, 4.1 and 4.2, use Theorem 3.6 which
requires the condition N ≤ exp(

√
n). For larger N , however, the result

follows by a formal argument. Assume that the statement has been proved for
N ≤ exp(

√
n) and assume that N > exp(

√
n). Let Xi = {Xi(k)}nk=1 ∈ Rn,

i ≤ N , be the random vectors under consideration. Pick the smallest m such
that N ≤ exp(

√
m). Clearly, m > n. Now consider random vectors Yi =

{Yi(k)}mk=1 ∈ Rm, i ≤ N , defined by Yi(k) = Xi(k) for k ≤ n and Yi(k) = gik
for k > n, where gik are independent Gaussian N (0, 1) random variables.
Then Yi’s are isotropic log-concave random vectors to which the result can
be applied. Identifying y = {y(k)}nk=1 ∈ Sn−1 with z = {z(k)}mk=1 ∈ Sm−1,
defined by z(k) = y(k) for k ≤ n, z(k) = 0 for k > n, we get

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ sup
y∈Sm−1

∣∣∣ 1

N

N∑
i=1

(|〈Yi, y〉|p − E|〈Yi, y〉|p)
∣∣∣ ≤ ε

with probability even higher than claimed. Thus in the proofs of both theo-
rems we may assume without loss of generality that N ≤ exp (

√
n).
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In the first step of the proof of Theorem 4.2 we shall use some tools
from the probability in Banach spaces, in particular classical symmetrization
and contraction methods as in [11] and [17]. These tools work for general
empirical processes and are not necessary in our setting since we are dealing
more specifically with powers of linear forms. We choose this approach,
though, as it requires less computations and leads to a unified, simpler and
more transparent presentation.

Theorem 4.2 is an easy consequence of the following technical proposition
applied with s = t.

Proposition 4.4. In the setting of Theorem 4.2, if n ≤ N ≤ e
√
n, then for

any s, t ≥ 1, the estimate

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ Cp−1tsp−1p logp−1
(2N

n

)√ n

N
+
Cpspnp/2

N
+ Cppp

( n

2N

)s
(4.3)

holds with probability at least

1− exp(−cs
√
n)− exp

(
− cp min{u, v}

)
where u = t2s2p−2n log2p−2(2N/n), v = ts−1

√
Nn/ log(2N/n), C, c > 0 are

absolute constants and cp > 0 depends on p only.

Remark 4.5. The two parameters s and t play different role in the proof
and reflect different asymptotic behavior of the probability with which (4.4)
holds. The first parameter s is related to a level of truncation of linear forms
whereas the second is a factor in the deviation when one deals only with
the truncated part. For instance, by taking s = t1/2, it allows us to get a
probability converging to one as t→∞, if both dimensions are fixed.

Before we proceed to the proof of the above proposition, let us introduce
some tools from the classical theory of probability in Banach spaces. Be-
low, ε1, . . . , εN will always denote a sequence of independent Rademacher
variables, independent of the sequence X1, . . . , XN .
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Lemma 4.6 (Contraction principle, see [16], Theorem 4.12). Let F : R+ →
R+ be convex and increasing. Let further ϕi : R → R, i ≤ N be 1-Lipschitz
with ϕi(0) = 0. Then, for any bounded set T ⊂ RN ,

EF
(1

2
sup
t∈T

∣∣∣ N∑
i=1

εiϕi(ti)
∣∣∣) ≤ EF

(
sup
t∈T

∣∣∣ N∑
i=1

εiti

∣∣∣).
Using standard symmetrization inequalities for sums of independent ran-

dom variables (see e.g., Chapter 2.3. of [26]) and applying the lemma with

F ≡ 1, and ϕi(s) = |s|p∧Bp

pBp−1 for s ∈ R, we obtain the following corollary.

Corollary 4.7. Let F be a family of functions, uniformly bounded by B > 0.
Then for any independent random variables X1, . . . , XN and any p ≥ 1, we
have

E sup
f∈F

∣∣∣ N∑
i=1

(|f(Xi)|p − E|f(Xi)|p)
∣∣∣ ≤ 4pBp−1E sup

f∈F

∣∣∣ N∑
i=1

εif(Xi)
∣∣∣

We will also use the celebrated Talagrand’s concentration inequality for
suprema of bounded empirical processes [25]. The version from [13] presented
below, provides the best known constants in this inequality (we will however
not take advantage of explicit constants). For a simple proof (with worse
constants) we refer the reader to [14, 15]

Lemma 4.8 ([13], Theorem 1.1). Let X1, X2, . . . , XN be independent random
variables with values in a measurable space (S,B) and let F be a countable
class of measurable functions f : S → [−a, a], such that for all i, Ef(Xi) = 0.
Consider the random variable

Z = sup
f∈F

N∑
i=1

f(Xi).

Then, for all t ≥ 0,

P(Z ≥ EZ + t) ≤ exp
(
− t2

2(σ2 + 2aEZ) + 3at

)
,

where

σ2 = sup
f∈F

N∑
i=1

Ef(Xi)
2.
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Proof of Proposition 4.4 For simplicity, throughout this proof we will
use the letter C to denote absolute constants, whose values may change from
line to line.

For B > 1 (to be specified later) consider

E sup
y∈Sn−1

∣∣∣ N∑
i=1

(
(|〈Xi, y〉| ∧B)p − E(|〈Xi, y〉| ∧B)p

)∣∣∣
≤ 4pBp−1E sup

y∈Sn−1

∣∣∣ N∑
i=1

εi(|〈Xi, y〉| ∧B)
∣∣∣,

where the last line follows from Corollary 4.7. The function t 7→ |t| ∧ B is a
contraction, so

E sup
y∈Sn−1

∣∣∣ N∑
i=1

(
(|〈Xi, y〉| ∧B)p − E(|〈Xi, y〉| ∧B)p

)∣∣∣
≤ 8pBp−1E sup

y∈Sn−1

∣∣∣ N∑
i=1

εi〈Xi, y〉
∣∣∣ ≤ 8pBp−1E

∣∣∣ N∑
i=1

εiXi

∣∣∣
≤ 8pBp−1

√
Nn.

Since by (2.3), E(|〈Xi, y〉|∧B)2p ≤ C2pp2p, Lemma 4.8 implies that for t ≥ 1,
with probability at least

1− exp
(
− 64B2p−2t2Nn

2NC2pp2p + 32pB2p−1
√
Nn+ 24pB2p−1t

√
Nn

)
≥ 1− exp(−cp min(t2nB2p−2, t

√
Nn/B)), (4.4)

one has

sup
y∈Sn−1

∣∣∣ N∑
i=1

(
(|〈Xi, y〉| ∧B)p − E(|〈Xi, y〉| ∧B)p

)∣∣∣ ≤ 16tpBp−1
√
Nn. (4.5)
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Observe that

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ sup
y∈Sn−1

∣∣∣ N∑
i=1

1

N
(|〈Xi, y〉| ∧B)p − E(|〈Xi, y〉| ∧B)p)

∣∣∣
+ sup

y∈Sn−1

1

N

N∑
i=1

(|〈Xi, y〉|p −Bp)1{|〈Xi,y〉|≥B}

+ sup
y∈Sn−1

1

N
E

N∑
i=1

(|〈Xi, y〉|p −Bp)1{|〈Xi,y〉|≥B},

Each of the obtained three terms is estimated separately, with the first
term already discussed in (4.5) and (4.4). By (2.3) and Chebyshev’s inequal-
ity we have

E|〈Xi, y〉|p1{|〈Xi,y〉|≥B} ≤ ‖〈Xi, y〉‖p2p
√

P(|〈Xi, y〉| ≥ B) ≤ Cpppe−B/C .

Together with the previous inequalities this implies that

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ 16tpBp−1

√
n

N
+ sup

y∈Sn−1

1

N

N∑
i=1

|〈Xi, y〉|p1{|〈Xi,y〉|≥B} + Cpppe−B/C ,

(4.6)

with probability at least

1− exp(−cp min(t2nB2p−2, t
√
Nn/B)).

Thus it remains to estimate supy∈Sn−1

∑N
i=1 |〈Xi, y〉|p1{|〈Xi,y〉|≥B}. To this

end we use Theorem 3.6 and Remark 3.10. It follows that for s ≥ 1, with
probability at least 1−e−cs

√
n, we have, for all m ≤ N and all z ∈ SN−1 with

| supp z| = m,

∣∣∣ N∑
i=1

ziXi

∣∣∣ ≤ Cs
(√

n+
√
m log

(2N

n

))
. (4.7)
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Dualizing this estimate and using the fact that for p ≥ 2, the `p norm is
dominated by the `2 norm, we obtain, for any set E ⊂ {1, . . . , N},

sup
y∈Sn−1

(∑
i∈E

|〈Xi, y〉|p
)1/p

≤ sup
y∈Sn−1

(∑
i∈E

|〈Xi, y〉|2
)1/2

≤ Cs
(√

n+
√
|E| log

(2N

n

))
. (4.8)

For an arbitrary y ∈ Sn−1 let EB = EB(y) := {i ≤ N : |〈Xi, y〉| ≥ B}. Then,
by (4.8),

B|EB|1/2 ≤

(∑
i∈EB

|〈Xi, y〉|2
)1/2

≤ Cs
(√

n+
√
|EB| log

(2N

n

))
.

Thus, whenever

B ≥ 2Cs log
(2N

n

)
, (4.9)

we obtain (for a different absolute constant C),

|EB| ≤ Cs2nB−2.

This combined with (4.8) implies, after taking the p’th powers and again
adjusting constants, that with probability at least 1−e−cs

√
n, for all y ∈ Sn−1,

N∑
i=1

|〈Xi, y〉|p1{|〈Xi,y〉|≥B} =
∑
i∈EB

|〈Xi, y〉|p

≤ Cpsp
(
np/2 + np/2spB−p logp

(2N

n

))
.

Setting B = 2Cs log(2N/n), so that (4.9) is satisfied, and combining the
resulting estimate with (4.6), we get

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ 16Cp−1tsp−1p logp−1
(2N

n

)√ n

N
+
Cpspnp/2

N
+ Cppp

( n

2N

)s
,
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with probability at least

1− exp(−cs
√
n)− exp

(
− cp min

(
t2s2p−2n log2p−2(2N/n),

ts−1
√
Nn

log(2N/n)

))
.

This completes the proof of Proposition 4.4, 2

Remark 4.9. Let G ∈ Rn be a standard Gaussian vector with the identity
as the covariance matrix and let h be a standard Gaussian random variable.
Assume that h and G are independent and put X = hG ∈ Rn. Clearly its
covariance matrix is the identity and it is easy to check that ‖〈X, y〉‖ψ1 ≤ c|y|,
for every y ∈ Rn, where c is a numerical constant. Nevertheless, it is known
from [3] that X does not satisfy the conclusion of Lemma 3.1; in fact the
density of X is not log-concave. Now let us consider the matrix A = A(N)

with i.i.d. copies Xi = hiGi, i = 1, . . . , N as columns with N ≤ en, where
(hi) are i.i.d copies of h and similarly (Gi) i.i.d copies of G, (hi) and (Gi)
independent. One can check that

E sup
y∈Sn−1

1

N

N∑
1

|〈Xi, y〉|2 = E sup
y∈Sn−1

1

N

N∑
1

h2
i |〈Gi, y〉|2

≥ E sup
i

1

N
h2
i |Gi|2 ≥ c

n

N
logN

where c > 0 is a numerical constant. Thus ‖A‖ ≥
√
cn logN . This example

shows that the sub-exponential decay of linear forms (ψ1 norm bounded) is
not sufficient for our problem.

Remark 4.10. In comparison, a sub-gaussian decay of linear forms is suf-
ficient. Indeed, it is known (see for instance [19]) that if there exists c > 0
such that E exp (|c〈X, y〉|2) ≤ 2 for every y ∈ Sn−1, then (1.5) holds with
probability larger than 1− exp(−c′n) for some numerical constant c′ > 0.

Remark 4.11. Another non necessarily log-concave example for which the
conclusion of Theorems 3.6 and 4.1 are valid is obtained when ‖〈X, y〉‖ψ1 ≤
c|y|, for every y ∈ Rn and |X| ≤ C

√
n where c, C > 0 are numerical con-

stants.
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4.2 Additional observations

We note several observations for norms of random matrices from `2 to `p,
p 6= 2.

Corollary 4.12. For 1 ≤ N ≤ e
√
n let Γ be a random N × n matrix with

rows X1, . . . , XN . Then for p ≥ 2, with probability at least 1− e−cp
√
n (where

cp > 0 depends only on p),

‖Γ‖`2→`p ≤ Cp(N
1/p + n1/2), (4.10)

with Cp > 0 depending only on p. Moreover

c̃pN
1/p + c

√
n ≤ E‖Γ‖`2→`p ≤ C̃p(N

1/p + n1/2), (4.11)

where C̃p, c̃p > 0 depend only on p and c > 0 is an absolute constant.

Proof Inequality (4.10) for N ≤ n follows from Theorem 3.6 and the com-
parison between `p norms. For N ≥ n, the inequality follows from Proposi-
tion 4.4.

Since by log-concavity, moments and quantiles of ‖Γ‖`2→`p are equivalent,
(4.10) implies that

E‖Γ‖`2→`p ≤ C̃p(N
1/p + n1/2).

On the other hand, a single row of Γ has expected Euclidean norm of the
order of

√
n and a single column of Γ has expected ‖ · ‖p norm of the order

of c(p)N1/p, so the left hand side of (4.11) follows trivially. 2

Corollary 4.13. For 1 ≤ N ≤ e
√
n let Γ be a random N×n matrix with rows

X1, . . . , XN . Then for p ∈ [1, 2), with probability at least 1 − e−c
√
n (where

c > 0 is an absolute constant),

‖Γ‖`2→`p ≤ C(N1/p +N1/p−1/2n1/2) (4.12)

for some absolute constant C > 0. Moreover

c̃(N1/p +N1/p−1/2n1/2) ≤ E‖Γ‖`2→`p ≤ C̃(N1/p +N1/p−1/2n1/2), (4.13)

where C̃, c̃ > 0 are absolute constants.
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Proof Inequality (4.12) and the right-hand side of (4.13) follow from the
corresponding results for p = 2, since

‖Γ‖`2→`p ≤ N1/p−1/2‖Γ‖`2→`2 .

To prove the left-hand side of (4.13), it is enough to notice that if 1/p∗+1/p =
1, then

E‖Γ‖`2→`p ≥ E
∣∣∣ N∑
i=1

1

N1/p∗
Xi

∣∣∣ ≥ c̃N1/2−1/p∗n1/2 = c̃N1/p−1/2n1/2

and the expected `p norm of a single column of Γ is at least c̃N1/p. 2

One can also obtain an almost-isometric result for p ∈ [1, 2).

Theorem 4.14. Let X1, . . . , XN be i.i.d. random vectors, distributed accord-
ing to an isotropic, log-concave probability measure on Rn. For any p ∈ [1, 2)
and for every ε ∈ (0, 1) and t ≥ 1, there exists C(ε, t) > 0, such that if
C(ε)n ≤ N ≤ e

√
n, then with probability at least 1 − e−ct

√
n (where c > 0 is

an absolute constant),

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣ ≤ ε. (4.14)

Moreover, one can take C(ε, t) = Ct2pε−2 log2p−2(2t2pε−2), where C > 0 is
an absolute constant.

Proof Since the proof differs only by technical details from the correspond-
ing argument for p ≥ 2, we will just indicate the necessary changes. We will
use the notation from the proof of Proposition 4.4.

Just as before, we truncate at the level of Ct log(2N/n) and use the
contraction principle to handle the bounded part of the process. As for
the unbounded part, we also proceed as before, however now we use the
comparison between the `k2 and `kp norm for p < 2 and k = |EB| ≤ n, which
yields

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|p − E|〈Xi, y〉|p)
∣∣∣

≤ 16Cp−1tpp log
(2N

n

)p−1
√
n

N
+
Cptpn

N
+
Cpppn

N
,
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with probability at least

1− exp(−ct
√
n)− exp(−cmin(t2n log2p−2(2N/n),

√
Nn/ log(2N/n)))

(the constants in the exponents can be made independent of p, since now p
runs over a bounded interval). This allows us to finish the proof. 2

Remark 4.15. The isomorphic result for p = 1 was proven in [10]. The
same paper also considers p ∈ (0, 1).

4.3 Elementary approach for p = 2

As announced earlier we will now briefly describe a more elementary proof of
Theorem 4.1 and Theorem 4.2 for p = 2. In this case, the classical Bernstein
inequality and a net argument on the sphere may replace the contraction
principle and concentration of measure for empirical processes, that have
been used – via Lemma 4.8 – to prove (4.5). The remaining part of the proof
is left unchanged.

The key point is the following well known observation:

Lemma 4.16. Let xi, i = 1, 2, . . . , N , be arbitrary vectors in Rn. Let ε ∈
(0, 1) and let N be a cε-net of Sn−1, for some constant c ∈ (0, 1). If we have

sup
y∈N

∣∣∣ 1

N

N∑
i=1

(〈xi, y〉2 − 1)
∣∣∣ ≤ ε

then

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(〈xi, y〉2 − 1)
∣∣∣ ≤ c′ε

where c′ depends on c.

We postpone the proof of this Lemma and pass to the proof of Theorems
4.1 and 4.2.

Fix a cε-net N of Sn−1 of cardinality at most (3/cε)n, and B > 0 to be
determined later. Pick an arbitrary y ∈ Sn−1.

For the reader’s convenience recall Bernstein’s inequality.
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Proposition 4.17 (Bernstein’s inequality, cf. e.g., [26]). Let Zi be indepen-
dent random variables, centered and such that |Zi| ≤ a for all 1 ≤ i ≤ N .
Put Z = 1

N

∑N
i=1 Zi. Then for all τ ≥ 0,

P(Z ≥ τ) ≤ exp
(
− τ 2N

2(σ2 + aτ/3)

)
,

where

σ2 = (1/N)
N∑
i=1

V ar(Zi).

In our case Zi = (|〈Xi, y〉| ∧ B)2 − E(|〈Xi, y〉| ∧ B)2, for 1 ≤ i ≤ N ,
a = B2. Since E(|〈Xi, y〉|)2 = 1 then (2.3) implies

V ar(Zi) ≤ E(|〈Xi, y〉| ∧B)4 ≤ c.

Setting τ = tB
√
n/N we infer that∣∣∣ 1

N

N∑
i=1

(
(|〈Xi, y〉| ∧B)2 − E(|〈Xi, y〉| ∧B)2

)∣∣∣ ≥ tB
√
n/N

with probability at most

exp
(
−cmin

(
t2B2n, t

√
Nn/B

))
.

By the union bound,

sup
y∈N

∣∣∣ 1

N

N∑
i=1

(
(|〈Xi, y〉| ∧B)2 − E(|〈Xi, y〉| ∧B)2

)∣∣∣ ≤ tB
√
n/N, (4.15)

with probability at least

1− exp
(
n log

( 3

cε

)
− cmin(t2nB2, t

√
Nn/B)

)
.

This estimate corresponds to (4.5).
Using this estimate with B = Ct log(2N/n) and handling the unbounded

part the same way as in Proposition 4.4 (see the argument that follows (4.5))
we obtain

sup
y∈N

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|2 − E|〈Xi, y〉|2)
∣∣∣

≤ Ct2 log
(2N

n

)√ n

N
+
C2t2n

N
+

4C2n

N
, (4.16)
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with probability at least

1− exp(−ct
√
n)− exp

(
n log

( 3

cε

)
− cmin

(
t4n log2(2N/n),

√
Nn

C log(2N/n)

))
.

This corresponds to the estimates in Proposition 4.4 (for s = t).

Now, for N ≥ C(ε, t)n, and C(ε, t) sufficiently large, the right hand side
of (4.16) is at most ε and 5/cε ≤ 2N/n which leads to the probability above
to be at least 1− exp(−ct

√
n). So with the same probability we get

sup
y∈N

∣∣∣ 1

N

N∑
i=1

(|〈Xi, y〉|2 − E|〈Xi, y〉|2)
∣∣∣ ≤ ε.

We can now conclude by Lemma 4.16 applied pointwise with xi = Xi(ω) for
ω from the event on which our estimates hold (recall that by the isotropicity
assumption we have E|〈Xi, y〉|2 = 1).

Proof of Lemma 4.16 Consider the semi-norm ‖ · ‖ on Rn defined by

‖y‖ =
( 1

N

N∑
i=1

|〈xi, y〉|2
)1/2

,

for y ∈ Rn. Our assumptions imply that

1− ε ≤
√

1− ε ≤ sup
y∈N

‖y‖ ≤
√

1 + ε ≤ 1 + ε/2.

The triangle inequality and homogeneity of ‖ · ‖ imply, by a standard argu-
ment, that

sup
y∈Sn−1

‖y‖ ≤ (1 + ε/2)(1− cε)−1 ≤ 1 + δ,

where

δ =
1 + 5c− 3c2

2(1− c)
ε

To get a lower estimate, write an arbitrary y ∈ Sn−1 in the form y =
y1 + cεy2, with y1 ∈ N and y2 ∈ Sn−1. Then ‖y‖ ≥ ‖y1‖ − cε‖y2‖ ≥
(1− ε)− cε(1 + δ) ≥ 1− δ1, where

δ1 =
2 + c+ 3c2 − 3c3

2(1− c)
ε.
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Thus for all y ∈ Sn−1, |‖y‖ − 1| ≤ c1ε for some c1 depending only on c.
In particular ‖y‖ ∈ [0, 1 + c1]. Using the fact that the function t 7→ t2 is
Lipschitz with constant 2(1 + c1) on the interval [0, 1 + c1], we conclude that

sup
y∈Sn−1

∣∣∣ 1

N

N∑
i=1

(〈xi, y〉2 − 1)
∣∣∣ ≤ c′ε,

where c′ = 2c1(1 + c1) depends only on c. 2
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