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Abstract

We give a short proof of a result of G. Paouris on the tail behaviour of
the Euclidean norm | X| of an isotropic log-concave random vector X € R",
stating that for every ¢t > 1,

P(IX| > ctv/n) < exp(—ty/n).

More precisely we show that for any log-concave random vector X and
any p > 1,

(EIX[))V? ~E[X|+ sup (E|(z,X)[")"?.
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1 Introduction

Let X be a random vector in the Euclidean space R™ equipped with its Eu-
clidean norm | - | and its scalar product (-,-). Assume that X has a log-concave
distribution (a typical example of such a distribution is a random vector uni-
formly distributed on a convex body). Assume further that it is centered and its
covariance matrix is the identity; such a random vector will be called isotropic.
A famous and important result of G. Paouris ([14], Theorem 1.1) states that

Theorem 1.1. There exists an absolute constant ¢ > 0 such that if X is an
isotropic log-concave random vector in R™, then for everyt > 1,

P(|X| > ctv/n) < exp(—ty/n).

This result had a huge impact on the study of log-concave measures and has
a lot of applications in that subject.

A Borel probability measure on R" is called log-concave if for all 0 < 6§ < 1
and all compact sets A, B C R™ one has

u(1 = 0)A +0B) = u(A) " u(B)".

We refer to [5, 6] for a general study of this class of measures. Clearly, the
affine image of a log-concave probability is also log-concave. The Euclidean
norm of an n-dimensional log-concave random vector has moments of all orders
(see [5]). A log-concave probability is supported on some convex subset of an
affine subspace where it has a density. In particular when the support of the
probability generates the whole space R™ (in which case we talk, in short, about
full-dimensional probability) a characterization of Borell (see [5, 6]) states that
the probability is absolutely continuous with respect to the Lebesgue measure
and has a density which is log-concave. We say that a random vector is log-
concave if its distribution is a log-concave measure.
Let X € R™, be a random vector, denote the weak p-th moment of X by

op(X) = sup (E|(z X)[")'/7.
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The purpose of this article is to give a short proof of the following theorem.

Theorem 1.2. For any log-concave random vector X € R™ and any p > 1,
(EIX[")VP < C(EIX] +0p(X)),
where C' is an absolute positive constant.

This result may be deduced directly from Paouris’ work [14]. Indeed, it is
a consequence of Theorem 8.2 combined with Lemma 3.9 in that paper. As
formulated here, Theorem 1.2 first appeared in [3] (Theorem 2). Note that
because trivially a converse inequality is valid (with constant 1/2), Theorem 1.2
states in fact an equivalence for (E|X[?)Y/?.



It is noteworthy that the following strengthening of Theorem 1.2 is still open:
(E|X|P)'/? < E|X| + Co,(X), where C is an absolute positive constant.

If X is a log-concave random vector, then so is (z, X) for every z € ™71,
It follows that there exists an absolute constant C’ > 0 such that for any p > 1,
op(X) < C'poa(X) ([5]). (In fact one can deduce this inequality with C' =1
from [4] or from Remark 5 in [11]; see also Remark 1 following Theorem 3.1 in
[2].) If moreover X is isotropic, then E|X| < (E|X|?)Y/2 = \/n and 03(X) = 1;
thus
(E|X ") < C(vn+C'p).

From Markov’s inequality for p = ty/n, Theorem 1.2 implies Theorem 1.1 with
c=(C"+1)eC.

Let us recall the idea underlying the proof by Paouris. Let X € R™ be an
isotropic log-concave random vector. Let p ~ y/n be an integer (for example, p =
[v/n]). Let Y = PX, where P is an orthogonal projection of rank p and let G be a
standard Gaussian vector ImP. By rotation invariance, E|Y'|P ~ E[(G/,/p,Y)|P.
If the linear forms (z, X) with |z| = 1 had a sub-Gaussian tail behaviour, the
proof would be straightforward. But in general they only obey a sub-exponential
tail behaviour. The first step of the proof consists of showing that there exists
some z for which (E|(z,Y)|?)}/? is in fact small compared to E|Y|. The second
step uses a concentration principle to show that (Ex|(z, PX)[P)!/P is essentially
constant on the sphere for a random orthogonal projection of rank p ~ /n,
and thus comparable to the minimum. Thus for these good projections, one
has a good estimate of (E|Y|?)'/? and the result follows by averaging over P.
Our proof follows the same scheme, at least for the first step, but whereas
the proof of the first step in [14] is the most technical part, our argument is
very simple. Then the estimate for min|,—; E[(z,Y)|P brings us to a minimax
problem precisely in the form answered by Gordon’s inequality ([9]).

Finally we would like to note that our proof can be generalized to the case
of convex measures in the sense of [5, 6]. Of course the proof is longer and more
technical. We provide the details in [1].

2 Proof of Theorem 1.2

First let us notice that it is enough to prove Theorem 1.2 for symmetric log-
concave random vectors. Indeed, let X be a log-concave random vector and let
X’ be its independent copy. By Jensen’s inequality we have for all p > 1,

(EIX[")VP < (E|X — EX[P)"/? + [EX]| < (EIX - X'[")/? + E|X].

On the other hand E|X — X’| < 2E|X| and for p > 1 one has 0,(X — X’) <
20,(X). Since X — X' is log-concave (see [8]) and symmetric, we obtain that
the symmetric case proved with a constant C’ implies the non-symmetric case
with the constant C' = 2C" + 1.



Lemma 2.1. Let Y € R? be a random vector. Let || - || be a norm on RY. Then
for allp >0,

E|lY|P)l/p
mir}(E|(z,Y)|”)1/1’ < wmw.

|2 - E|Y|

Proof: Let r be the largest number such that r||¢t]| < |¢| for all ¢ € R?. Using
duality, pick z € R? such that |z| = 1 and | z||« < r (the dual norm of ||-||). Then
|(z,t)] < r||t]| < [t| for all t € RY. Therefore, (E|(z, YV)[P)/? < r(E||Y||?)'/? for
any p > 0, and the proof follows from rE| Y| < E|Y]. O

Lemma 2.2. LetY be a full-dimensional symmetric log-concave R?-valued ran-
dom vector. Then there exists a norm || - || on R? such that

(E[Y]7)!/¢ < 500E[Y].

Remark. In fact the constant 500 can be significantly improved. To keep the
presentation short and transparent we omit the details.

Proof: From Borell’s characterization Y has an even log-concave density gy .
Thus gy (0) is the maximum of gy . Define a symmetric convex set by

K={teR%:gy(t) =257y (0)}.

Since clearly K has a non-empty interior, it is the unit ball of a norm which we

denote by [ [|. On one hand, 1 > P(Y € K) = [, gy > 2599y (0)vol(K), thus

P(|Y ] < 1/50) = / gy < gv(0)50~Tvol(K) < 277 < 1/2.
K/50

Therefore E||Y|| > P(]Y]] > 1/50)/50 > 1/100. On the other hand, by the
log-concavity of gy,

VieRINK  goy(t) =2 %y (t/2) > 27 %y (t) %y (0)1/2 > (5/2)7gy (t).
Therefore
EY(* <1+ E(|Y[lyerax) < 1+ (2/5)'E[2Y[|? = 1+ (4/5)'E[ Y.
We conclude that (E||Y|9)}/¢ < 5 and (E|Y]|7)Y//E| Y] < 500. O

Lemma 2.3. Let n,q > 1 be integers and p > 1. Let X be an n-dimensional
random vector, G be a standard Gaussian vector in R™ and T' be an n X g
standard Gaussian matriz. Then

XY < gt (B [Tl + (0 + VD 3,(X)).

where |||z]|| = (E|(z, X)|P)'/P and ab is the p-th moment of an N(0,1) Gaussian
random variable (so that lim, .. (0p/\/P) = 1//€).



Proof: By rotation invariance, E[(G, X)[? = ob E|X[P. Notice that

o= sup E[G.HP = sup [t =o2(X),
[tl]«<1 [El]«<1

where |||-|||« denotes the norm on R™ dual to the norm |||-|||. Denote the median
of |||G]|| by Mg. The classical deviation inequality for a norm of a Gaussian
vector ([7], [15], see also [12], Theorem 12.2) states

Vs > 0 P(’||G||—Mg‘23)§2/S/Uexp(_t2/2) \/‘%

and since M¢ < E|||G]|| ([10], see also [12], Lemma 12.2) this implies
(EIX )P = oy, HEI|G][[P)P < o (G| + pop (X))

(cf. [13], Statement 3.1).
The Gordon minimax lower bound (see [9], Theorem 2.5) states that for any
norm ||| - ]|

EIIIGII = E min [[|T¢]]] + (E|H]) max[[lz[]} < E min (T[]} + g op(X),

where H is a standard Gaussian vector in R?. This concludes the proof. O

Proof of Theorem 1.2: Assume that X is log-concave symmetric. We use
the notation of Lemma 2.3 with ¢ the integer such that p < g < p+ 1. We first
condition on I'. Let Y =T'*X. Note that Y is log-concave symmetric and that

Il = (Ex|(Tt, X)[P)H? = (Ex|(t, " X)[P)V/2.

If I X is supported by a hyperplane then minj—; (Ex |(¢,I*X)|P)!/? = 0. Oth-
erwise Lemma 2.2 applies and combined with Lemma 2.1 gives that

min |||T¥]|| < ‘Hllir;(Exl<t,P*X>|”)1/” < 500 Ex [T X].
tl= t|=

By taking expectation over I' we get
Elrrllin [||T¢]]] < 500E|[T™X| =500E[H|E|X| < 500./qE|X|,
t|=1
where H € RY is a standard Gaussian vector. Applying Lemma 2.3 we obtain

(E|XP)? <5000, " GEIX|+ (1+a, ' /q)op(X).

This implies the desired result, since ¢ < p+ 1 and hence a;, 1\/5 < ¢ for some
numerical constant ¢ (recall that lim, .o (ap/\/P) = 1/V/€). O
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