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Abstract

In this note we discuss an old conjecture in Convex Geometry as-
serting that the regular simplex has the largest mean width among all
simplices inscribed into the Euclidean ball and its relation to Infor-
mation Theory. Equivalently, in the language of Gaussian processes,
the conjecture states that the expectation of the maximum of n + 1
standard Gaussian variables is maximal when the expectations of all
pairwise products are −1/n, that is, when the Gaussian variables form
a regular simplex in L2. We mention other conjectures as well, in par-
ticular on the expectation of the smallest (in absolute value) order
statistic of a sequence of standard Gaussian variables (not necessarily
independent), where we expect the same answer.
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1 Introduction

By Bn
2 and Sn−1 we denote the standard unit Euclidean ball and the unit

Euclidean sphere in Rn. Then | · | and 〈·, ·〉 denote the corresponding Eu-
clidean norm and inner product. By {ei}ni=1 we denote the canonical basis of
Rn and by ∆n we denote the regular simplex inscribed into Sn−1. Given a
convex body K in Rn, its support function and mean width are defined by

hK(u) = max
x∈K
〈u, x〉 and w(K) = 2

∫
Sn−1

hK(u) dµ(u),

1



where µ is the normalized Lebesgue measure on Sn−1.
In this note we discuss the following long-standing open conjecture and

some related results and conjectures.

Conjecture 1.1 Among all simplices inscribed into Bn
2 the regular simplex

∆n has the maximal mean width. Moreover, ∆n is the unique simplex maxi-
mizing mean width.

This conjecture was briefly discussed in a survey of P. Gritzmann and
V. Klee ([24], Section 9.10.2) and was mentioned several times by V. Klee
in his talks. It was also mentioned in K. Böröczky’s book [11] and in recent
works by D. Hug and R. Schneider [25] and by K. Böröczky and R. Schneider
[12]. We refer to [10] for related results on the mean width of a simplex and to
[41] for the general theory of convex bodies and Brunn–Minkowski Theory. In
the Information Theory community it was a general belief that the conjecture
is known to be true (see e.g. [2, 3, 16, 45, 51]). We discuss the importance
of Conjecture 1.1 to Information Theory in Section 2.

We would like to emphasize an important difference in the setting of
this problem with a standard setting of problems in Asymptotic Geometric
Analysis, where we usually identify bodies which can be obtained from each
other by an affine transformation (or, in the centrally symmetric case, by a
linear transformation), working thus with equivalence classes of bodies. In
many problems we usually fix a position of a body, where by a position of a
body we understand a certain affine (linear in the centrally symmetric case)
image of it. In this context Conjecture 1.1 has to be compared with the
following results by F. Barthe [8] (who developed the approach originated
by K. Ball in [5, 6] to describe bodies with the maximal volume ratio and
surface area) and by M. Schmuckenschläger [40] respectively, investigating
maximizers and minimizers of mean width of bodies in John’s and Löwner’s
positions.

Theorem 1.2 Among all convex bodies in the John position, that is, bodies,
whose maximal volume ellipsoid is the unit Euclidean ball Bn

2 , the regular
simplex n∆n has the largest mean width.

Theorem 1.3 Among all convex bodies in the Löwner position, that is, bod-
ies, whose minimal volume ellipsoid is the unit Euclidean ball Bn

2 , the regular
simplex ∆n has the smallest mean width.
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Corresponding statements for the class of centrally symmetric bodies were
proved by G. Schechtman and M. Schmuckenschläger [39]. The maximizer
of the mean width among all centrally symmetric bodies in the John posi-
tion is the cube, while the minimizer of the mean width among all centrally
symmetric bodies in the Löwner position is the cross-polytope (octahedron).

We now reformulate the conjecture in the language of Gaussian processes.
By g1, g2, g3, . . . we always denote i.i.d. standard Gaussian random variables
(gi ∼ N (0, 1)). G = (g1, . . . , gn) denotes the standard Gaussian random
vector in Rn. The integration in polar coordinates leads to

w(K) = cn EhK(G), (1)

where cn is a constant depending only on n (in fact, cn ≥ 2√
n

and cn
√
n→ 2).

When K = conv {x1, . . . , xn+1} ⊂ Rn, |xi| = 1 for i ≤ n+ 1, we have

EhK(G) = E max
i≤n+1

〈G, xi〉 .

Denote ξi = 〈G, xi〉, i ≤ n+ 1. Then ξi ∼ N (0, 1) and

σij = σij(K) := Eξiξj = 〈xi, xj〉 .

Recall, that the vertices v1, . . . , vn+1 of ∆n satisfy

|vi| = 1 and 〈vi, vj〉 = − 1

n
for all i 6= j.

The (n+1)× (n+1) covariance matrix corresponding to the regular simplex,
that is, σ = {σij}ij with σii = 1 and σij = − 1

n
for i 6= j, we denote by σ(∆n).

Thus Conjecture 1.1 is equivalent to

Conjecture 1.4 Among all Gaussian random vectors (ξ1, . . . , ξn+1) with ξi ∼
N (0, 1) for all i ≤ n+ 1, the expectation

E max
i≤n+1

ξi

is maximal when the covariance matrix σ = σ(∆n). The solution is unique.

We would like to emphasize that if we add the absolute values to ξi’s,
that is, if we want to maximize Emaxi≤n+1 |ξi|, then the answer is known –
the maximum of such expectation attains when ξi’s are independent as was
proved by Z. Šidák [43] and E.D. Gluskin [21]. Geometrically it says the
following.
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Theorem 1.5 Among all linear images of the cross-polytope contained in
Bn

2 the cross-polytope itself has the maximal mean width.

Indeed, denote the cross-polytope by Bn
1 and let T be a linear operator

such that TBn
1 ⊂ Bn

2 . Denote xi = Tei for i ≥ 1. Without loss of generality,
|xi| = 1. Let ξi = 〈G, xi〉, i ≥ 1. Then ξi ∼ N (0, 1). Therefore, by (1) and
by the Šidák theorem,

w(TBn
1 ) = cnEmax

i≤n
|ξi| ≤ cnEmax

i≤n
|gi| = w(Bn

1 ).

The other counterpart of this theorem follows from Proposition 4 in [35] in
a similar way, namely we have

Theorem 1.6 Among all linear images of the cross-polytope containing 1√
n
Bn

2

the cross-polytope itself has the minimal mean width.

A. Balitskiy, R. Karasev, and A. Tsigler conjectured that for every r > 0
the Gaussian measure of a simplex S containing rBn

2 is minimized when S is
regular (see Conjecture 3.3 in [4]). In the same way as Šidák’s theorem and
Proposition 4 in [35] imply Theorems 1.5 and 1.6, their conjecture would im-
mediately imply Conjecture 1.1. Moreover, they showed that their conjecture
implies Conjecture 2.4 formulated below.

This note is organized as follows. In Section 2, we discuss the Simplex
Code Conjecture or the Weak Simplex Conjecture, which makes links between
Conjecture 1.1 and Information theory. In particular, we mention a problem,
Problem 2.2, on the behaviour of the maximum of a certain Gaussian process
which is (if solution is a regular simplex) stronger than Conjecture 1.4 and
which is needed to solve the corresponding problem in transmitting signals.
In Section 3, we describe two other stronger conjectures related to the Steiner
formula and to the intrinsic volumes. Then, in Section 4, we provide some
asymptotic estimates, in particular we show that the mean width of a half-
dimensional (flat) cross-polytope is surprisingly very close to the mean width
of a regular simplex. We also show that the regular simplex is a solution in
the asymptotic sense. Finally, in Section 5, we formulate another conjecture
on the minimum of a Gaussian process, where, as we believe, the solution
is also the regular simplex. It seems that Conjectures 3.1, 3.2, 5.1 have not
appeared in the literature yet.
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2 Simplex Code Conjecture

In this section we discuss the relation of Conjecture 1.1 to Information The-
ory. We first describe a problem in transmitting signals which goes back to
works of V.A. Kotel’nikov [29], L.A. MacColl [37], and C.E. Shannon [42]
published at the end of 40-s.

For positive integers n and N let x1, . . . , xN ∈ Sn−1 be signal vectors
to be transmitted. Let Y = λxi + G be the observed (received) vector
when xi was transmitted. Here, G is the standard Gaussian random vector
(corresponding to the white noise) and λ > 0 is the (fixed) signal-to-noise
ratio. The problem is:

Problem 2.1 Observed Y to reconstruct xj which has been transmitted.

To solve the problem one creates the matched filter – the vectors yi =
〈Y, xi〉, i ≤ N , and decides that xj was transmitted if

yj = max
i≤N

yi.

We want to maximize the probability of the right decision, that is, to maxi-
mize the function

ψλ

(
{xi}Ni=1

)
=

1

N

N∑
j=1

P
(
yj = max

i≤N
〈Y, xi〉

∣∣∣ Y = λxj +G

)
.

In his works [1, 3] A.V. Balakrishnan essentially developed the theory
(see also Chapter 14 of C.L. Weber’s [51] book for self-contained presenta-
tion). In [1] Balakrishnan proved that the latter problem of maximizing ψλ
is equivalent to the following problem.

Problem 2.2 Given a Gaussian random vector (ξ1, . . . , ξN) with ξi ∼ N (0, 1)
for all i ≤ N and a covariance matrix σ of rank n set

φλ(σ) := E exp
(
λ max

i≤N
ξi

)
.

Maximize φλ(σ) over all choices of covariance matrices σ.

Differentiating with respect to λ, one gets the following [1].
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Lemma 2.3 If there exists a solution of Problem 2.2 which is independent
of λ in an interval (0, λ0) for some λ0 > 0, then this solution maximizes
mean width of the convex hull of xi’s.

We turn now to the case of the simplex, that is, we fix N = n + 1. The
following is the Simplex Code Conjecture or the Weak Simplex Conjecture.

Conjecture 2.4 Let N = n + 1. For every (fixed) λ > 0 the function φλ(·)
is maximal for the regular simplex, that is, when the covariance matrix of
ξi’s is σ = σ(∆n).

The following two theorems were proved in [1] and [3] respectively.

Theorem 2.5 Let N = n + 1. For every (fixed) λ > 0, the regular simplex
is a local maximum in Problem 2.2. Furthermore, if there exists a solution
of Problem 2.2 which is independent of λ on some interval (λ1, λ2), then this
solution is given by the regular simplex.

Theorem 2.6 Given λ > 0 let σλ denote a point (or one of points) of max-
imum of φλ(·). Then

lim
λ→∞

σλ = σ(∆n).

In [3] a similar statement about the limit at 0 is claimed but its proof
essentially uses Conjecture 1.1.

In 1966 H.J. Landau and D. Slepian [30] published a proof of Conjec-
ture 2.4 for arbitrary n ≥ 3. The proof was based on the geometric technique
developed by L. Fejes-Tóth ([18], pp. 137-138). However, as was noticed by
S.M. Farber [17] and R.M. Tanner [48], the 3-dimensional proofs of corre-
sponding geometric results in [18] do not extend to higher dimensions (see
also [4] for more insight and related conjectures). Therefore the proof of Con-
jecture 2.4 in [30] holds only for n = 3. We refer to [49] for two more related
conjectures, which are stronger than Conjecture 2.4. We would also like to
mention that T.M. Cover [15] noticed that Conjecture 2.4 can be reduced to
the following geometric problem.

Conjecture 2.7 Let A > 0 and B ⊂ Sn−1 be a spherical cap with the center
at x ∈ Sn−1. Let S be a spherical simplex of the area A, where by a spherical
simplex we understand the intersection of the sphere Sn−1 with n half-spaces.
Then a regular spherical simplex with the center at x maximizes the area of
the intersection B ∩ S.
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Finally we would like to mention the Strong Simplex Conjecture, which
asserts the same as the Weak Simplex Conjecture, but instead of constraints
xi ∈ Sn−1, i ≤ n+ 1, in the initial problem one uses the constraint

n+1∑
i=1

|xi|2 = n+ 1,

i.e., instead of choosing xi’s on the sphere we fix the sum of their squared
lengths. The Strong Simplex Conjecture was disproved by M. Steiner [45],
who used essentially a one-dimensional example. For other counter-examples
see [31, 47].

3 Two more geometric conjectures.

In this section we discuss connections of Conjecture 1.1 to the Steiner formula
and to the intrinsic volumes and provide two more geometric conjectures
which are stronger than Conjecture 1.1. Both conjectures were communi-
cated to us after the first draft of this note was written. We refer to [41] and
references therein for the general theory of convex bodies, Brunn–Minkowski
Theory, in particular for information about and relations between the mean
width functional, quermassintegrals, intrinsic volumes, etc. (see also [46] for
relations between intrinsic volumes and Gaussian processes).

Let t > 0 and K be a convex body in Rn. Consider the Minkowski sum

Kt := K + tBn
2 = {x+ ty | x ∈ K, y ∈ Bn

2 } = {z | dist(z,K) ≤ t} ,

where dist denotes the Euclidean distance. The Steiner formula says that
the (n-dimensional) volume |Kt| of Kt is polynomial in t. It can be written
as

|Kt| =
n∑
j=0

κn−jVj(K)tn−j,

where κ0 = 1, κi = |Bi
2| = πi/2/Γ(1 + i/2) for i ≥ 1, and Vi(K), i ≤ n, are

coefficients which depend only on K. These coefficients are called intrinsic
volumes of K. Analyzing the Steiner formula it is easy to see that V0(K) = 1,
Vn(K) = |K|, and 2Vn−1(K) is the surface area of K. Moreover, it is known
that V1(K) = nκn/(2κn−1)w(K) and V1 =

√
2πEmaxx∈K sup 〈G, x〉 (see e.g.

Proposition 2.4.14 in [46], cf. (1)).
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R. van Handel [50] suggested the following natural extension of Conjec-
ture 1.1.

Conjecture 3.1 For every (fixed) t > 0, among all simplices S ⊂ Bn
2 the

regular simplex ∆n maximizes the volume |St|. Moreover, ∆n is the unique
simplex maximizing this volume.

Conjecture 3.1 is stronger than Conjecture 1.1. Indeed, using the Steiner
formula and that V0(K) = 1 for every K, we have

|(∆n)t| − |St| =
n−1∑
j=0

κj (Vn−j(∆n)− Vn−j(S)) tj,

therefore, sending t to infinity, we observe Vn−1(∆n) ≥ Vn−1(S).

Furthermore, Z. Kabluchko and D. Zaporozhets [28] suggested even stronger
conjecture.

Conjecture 3.2 Let S ⊂ Bn
2 be a simplex. Then for every 1 ≤ i ≤ n one

has Vi(S) ≤ Vi(∆n). Moreover, if S is not regular, then the inequality is
strict for every i.

We would like to note that some cases in Conjecture 3.2 are known.
Indeed, the case i = n corresponds to the volume. It follows from the John
theorem ([26, 7], see also [49] for a geometric proof). The case i = n − 1,
corresponding to the surface area, was proved by Tanner in [49].

4 Asymptotic results and comparison to cross-

polytope

In this section we discuss asymptotic behaviour and compare mean width of
the regular simplex with the mean width of corresponding half-dimensional
cross-polytope, showing that surprisingly they are very close to each other.
All results of this section with complete proofs can be found in [27].

As before, let gi’s denote i.i.d. standard Gaussian random variables. Let
(η1, . . . , ηn+1) denote a Gaussian random vector with the covariance matrix
σ(∆n).
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We believe that the following observation has been known for many years.
A.V. Balakrishnan [1] tributes it to C.R. Chan (in the context of the function
ψλ defined in the previous section). It can be obtained by direct calculations,
since ∆n can be realized as the (properly normalized) convex hull of the
canonical basis {ei}n+1

i=1 in Rn+1.

Claim 4.1

E max
i≤n+1

ηi =

√
n+ 1

n
E max

i≤n+1
gi =

(
1 +

1 + o(1)

2n

)
E max

i≤n+1
gi.

The next statement claims that the regular simplex is the best asymp-
totically. Its proof is based on standard estimates for Gaussian processes.

Lemma 4.2 If Sn ⊂ Bn
2 is a simplex with the maximal mean width then

w(∆n) ≤ w(Sn) ≤
(

1 +
C ln lnn

lnn

)
w(∆n),

where C is a positive absolute constant.

Note here that in [19] the mean width of the regular simplex was calcu-
lated as

w(∆n) = 2

√
lnn

n

(
1− (1 + o(1))

ln lnn

lnn

)
.

We turn now to the comparison with the cross-polytope (octahedron).
Recall that we consider convex hulls of n+ 1 points on the Euclidean sphere.
Assume that n = 2m − 1 and consider the m-dimensional cross-polytope
Bm

1 = conv {±ei}mi=1 in Rn. Clearly, Bm
1 is a (degenerated) simplex in Rn.

Surprisingly, the mean width of Bm
1 is very close to the mean width of ∆n

as the next theorem shows (recall that the mean width can be computed via
corresponding expectations of Gaussian processes and that Claim 4.1 relates
dependent Gaussian random variables corresponding to the regular simplex
with independent Gaussian random variables). The left hand side inequality
in Theorem 4.3 is immediate by Slepian’s Lemma ([44], see also [32, 34]).

Theorem 4.3 Let n = 2m− 1. Then

E max
i≤2m

gi ≤ E max
i≤m
|gi| =

(
1 +

1 + o(1)

4n lnn

)
E max

i≤n+1
gi.
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In particular,

w(Bm
1 ) =

(
1− 1 + o(1)

2n

)
w(∆n).

Moreover, using the S. Chatterjee technique ([14]), a path σt, t ∈ [0, 1],
in covariance matrices of Gaussian vectors can be constructed so that σ0
corresponds to the vector √

n+ 1

n
(g1, . . . , gn+1)

(that is, to the regular simplex) and σ1 corresponds to the vector

(g1,−g1, g2,−g2, . . . , gm,−gm)

(that is, to the m-dimensional cross-polytope) and such that the expecta-
tion of maximum is not-decreasing along this path. This gives the following
estimate, which is slightly weaker for large n, but better for small n.

Theorem 4.4 Let n = 2m− 1.

E max
i≤2m

gi ≤ E max
i≤m
|gi| ≤

√
n+ 1

n
E max

i≤2m
gi.

In particular,

w(Bm
1 ) ≤ w(∆n) ≤

√
n+ 1

n
w(Bm

1 ).

5 A conjecture on the smallest order statistic

In this section we formulate a conjecture on Gaussian processes, which, to the
best of our knowledge, appears for the first time. Although it is not directly
related to the mean width of convex bodies, we have decided to mention it
here, since it also deals with an extreme order statistic of coordinates of the
standard Gaussian vector (cf. Conjecture 1.4) and since we believe that it
has the same solution as Conjecture 1.1.

Conjecture 5.1 Let n ≥ 2 and p > 0. Among all Gaussian random vectors
(ξ1, . . . , ξn+1) with ξi ∼ N (0, 1) for all i ≤ n+ 1, the expectation

E min
i≤n+1

|ξi|p

is minimal when the covariance matrix σ = σ(∆n). The solution is unique.
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The main motivation for this question comes from the Mallat-Zeitouni
problem which is still open in full generality ([38], see also [36] for discussions,
history, references, and a partial solution). In the original notes, published
on O. Zeitouni’s webpage in 2000, S. Mallat and O. Zeitouni suggested a
way to solve it. Their method would have worked if a more general result in
the spirit of Conjecture 5.1 had held with p = 2. Moreover, in [22, 23] the
authors were able to prove that for every sequence of real numbers {ai}n+1

i=1

and every p > 0,

E min
i≤n+1

|aigi|p ≤ Γ(2 + p)E min
i≤n+1

|aiξi|p,

where Γ(·) is the Gamma-function. This result, together with the Šidák
theorem also supported the intuition that the independent case gives the
minimum (see also [33]). However later, R. van Handel checked that for
n = 2 the arrangement corresponding for ∆2 is better than three independent
variables [38].

Acknowledgment. The author is grateful to A. Akopyan, Z. Kabluchko,
R. Karasev, J. Prochno, R. Schneider, R. van Handel, D. Zaporozhets for
valuable remarks on the first draft of this note and to Z. Kabluchko, R. van
Handel, and D. Zaporozhets for bringing conjectures described in Section 3
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