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We improve some upper bounds for minimal dispersion on the 
cube and torus. Our new ingredient is an improvement of a 
probabilistic lemma used to obtain upper bounds for dispersion in 
several previous works. Our new lemma combines a random and 
non-random choice of points in the cube. This leads to better upper 
bounds for the minimal dispersion.

© 2024 The Author(s). Published by Elsevier Inc. This is an open 
access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

For a given set of points P ⊂ Q d := [0, 1]d its dispersion is defined as the supremum over volumes 
of axis-parallel boxes in Q d that do not intersect P . Then the minimal dispersion on the cube is de-
fined as the infimum of the dispersions of all possible subsets P ⊂ Q d of cardinality n. The dispersion 
on the torus is defined similarly. This notion goes back to [13], where a notion from [8] was modified. 
Often it is more convenient to work with its inverse function, which, given a positive ε, measures the 
smallest positive integer N = N(ε, d) such that there exists a configuration X of N points in [0, 1]d
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with the property that any axis-parallel box of volume exceeding ε contains at least one point. We 
refer to [10] and references therein for the history of the question and related references.

In this note we improve some upper bounds for the minimal dispersions on the cube and on the 
torus and for its inverse function.

Several recent proofs on upper bounds on N use the following scheme. In the first step, approxi-
mate the set of axis-parallel boxes in Q d by a finite set N , with the property that every axis-parallel 
box of volume at least ε contains at least one element of N . In the second step, construct a set P
such that each element of N intersects P , in which case we say that P is a piercing set for N . To 
ensure that P pierces N , the points in P are taken randomly, according to the uniform distribution 
on the cube, and subsequently a union bound is applied to verify that such random P with high 
probability intersects every element of N .

Our main new ingredient is in the improvement of the second step, where a random choice of 
points is followed up by a deterministic phase. More precisely, our new probabilistic Lemma 3.3 will 
have two phases. In the first phase we choose a (smaller) set Q of random points and estimate 
how many sets in our approximation N have an empty intersection with Q (in previous proofs one 
insisted that every set in N intersects Q ). In a second phase we take care of the “empty” sets in N
(the ones that do not intersect Q ) by choosing a representative point in each such set. The set Q 0 of 
representative points together with Q forms a piercing set for N .

The new Lemma 3.3 subsequently leads to better upper bounds on minimal dispersion, see (4). 
However in doing the second step we lose randomness, so our new bound does not hold for a random 
choice of points. Moreover, it is known that our bound cannot hold in the random setting, for instance 
see [7], where the authors provide lower bounds on the inverse of minimal dispersion for a random 
set of points (formula (2) below).

We would also like to mention that the idea of choosing a random set of points in a first phase 
and then completing it by a deterministic choice (depending on a realization of a random set) in the 
second phase is not new and was used in literature, see e.g. [12], or [1, Chapter 3].

2. Notation, preliminaries and main result

Throughout the paper the following notation is used. For positive integer d define the unit cube 
Q d = [0, 1]d . We will use | · | to denote both volume of a subset of Rd and a cardinality of a finite 
set. Letters C, C0, C1, ..., c, c0, c1, ... always denote absolute positive constant (independent of all other 
parameters and sets), whose values may change from line to line.

Define a set of all axis-parallel rectangles in Q d by

Rd =
{

d∏
i=1

Ii | Ii = [ai,bi) ⊂ [0,1]
}

.

For a set P ⊂ Q d define its dispersion by

disp(P ) = sup {|B| | B ∈ Rd, B ∩ P = ∅} .

The minimal dispersion disp∗ is the following function of positive integers n, d,

disp∗(n,d) = inf{disp(P ) | P ⊂ Q d, |P | = n}.
Finally, we define an inverse of minimal dispersion as

N(ε,d) = min{n ∈N | disp∗(n,d) ≤ ε}.
Most of the results will be stated in terms of the inverse of minimal dispersion.

We also will be dealing with the dispersion on the torus, which is defined similarly. Let

R̃d :=
{

d∏
Ii(a,b) | a,b ∈ Q d

}
,

i=1

2
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where

Ii(a,b) :=
{

(ai,bi), whenever 0 ≤ ai < bi ≤ 1,

[0,1] \ [bi,ai], whenever 0 ≤ bi < ai ≤ 1.

Then we follow definitions above with boxes taken from R̃d instead of Rd , that is

d̃isp(P ) = sup{|B| | B ∈ R̃d, B ∩ P = ∅}, d̃isp
∗
(n,d) = inf|P |=n

d̃isp(P ),

and

Ñ(ε,d) = min{n ∈N | d̃isp
∗
(n,d) ≤ ε}.

The behavior of dispersion has been intensively studied during the last decade, and it turns out 
that it behaves differently in different regimes. When ε is extremely small with respect to d, namely 
ε < d−d2

, the best known bound was obtained in [4], where the authors proved that

N(ε,d) ≤ C d2 ln d

ε
.

This improved the bound Cd/ε with Cd being exponential in d, obtained in previous works [13,5,2]. 
Furthermore, the authors of [4] have also shown that for ε ≤ (4d)−d one has

N(ε,d) ≥ d

eε
.

On the other hand, for relatively large ε, namely for ε > 1
d

ln2 d
ln ln d , the best upper bound was ob-

tained in [9], improving previous works [15] and [18],

N(ε,d) ≤ C(ln d) ln(1/ε)

ε2
.

Very recently it was shown in [16] that this bound is sharp (up to a logarithmic factor) whenever 
1/4 ≥ ε ≥ 1/4

√
d, more precisely in this regime one has

N(ε,d) ≥ C ln d

ε2 ln(1/ε)
.

We would like to mention here the bound from [2], which holds for all ε < 1/4, and which was the 
first (lower) bound showing that the dispersion grows with the dimension,

N(ε,d) ≥ log2 d

8ε
.

We would also like to note that for large ε, namely ε ∈ (1/4, 1/2), the upper bound does not grow 
with dimension. From [11] (see also [15]) we have

N(ε,d) ≤ π√
ε − 1/4

− 3.

Clearly, for ε ≥ 1/2 one has N(ε, d) = 1 by taking the point (1/2, ..., 1/2).
However, for ε not so large and not so small with respect to d the picture is different. The best 

known bound was obtained in [10], improving previous results from [3,14,9], namely

N(ε,d) ≤ C
d ln ln(1/ε) + ln(1/ε)

ε
. (1)

The proof in [10] shows that a random choice of independent points uniformly distributed in the cube 
works. Moreover, it was shown in [7] that using such a random choice of points, one cannot expect 
anything better than
3
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max

{
c

ε
ln

(
1

ε

)
,

d

2ε

}
, (2)

that is, the bound (1) is sharp up to double logarithmic factor for a random choice of points. In this 
note we improve (1) by eliminating the ln(1/ε) summand. Of course, as the previous formula shows, 
the improvement cannot be achieved for a random choice of points.

Before formulating our main result we briefly discuss the dispersion on the torus. In [17] the lower 
bound was obtained valid for all ε ∈ (0, 1),

Ñ(ε,d) ≥ d

ε
.

It is interesting to note that contrary to the non-periodic case, the lower bound is at least linear in 
d and always grows with d, even for ε > 1/2. The best known upper bound was obtained in [10], 
improving previous bounds from [9] and [14], namely

Ñ(ε,d) ≤ C
d ln(2d) + ln(e/ε)

ε
. (3)

Here, the random choice of points was also used. In this note we improve (3) to Cd(ln ln(e/ε) +
ln(2d))/ε (which is always better), however the choice of points is, once again, not random.

The main result of this paper is the following.

Theorem 2.1. Let d ≥ 2 and ε ∈ (0, 1). Then

N(ε,d) ≤ 16ed ln ln(8/ε)

ε
and Ñ(ε,d) ≤ 8ed(ln ln(e/ε) + ln(2d))

ε
.

In particular, there exists an absolute constant C > 1 such that for d ≥ 2 and n ≥ 4d one has

disp∗(n,d) ≤ C
d ln ln(n/d)

n
and d̃isp

∗
(n,d) ≤ C

d(ln ln(n/d) + ln d)

n
.

Thus, combining bounds of Theorem 2.1 with previously known bounds, the current state of the 
art for the inverse minimal dispersion on the cube is

N(ε,d) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C ln d
ε2 ln

( 1
ε

)
if ε ≥ ln2 d

d ln ln(2d)
,

C d
ε ln ln

( 1
ε

)
if ln2 d

d ln ln(2d)
≥ ε ≥ exp (−dd),

C d2 ln d
ε if ε ≤ exp (−dd),

(4)

which can be summarized in Fig. 1.

3. A new probabilistic lemma

For ε > 0 consider sets of all boxes from Rd (resp., R̃d) of volume at least ε, i.e.,

Bd(ε) :=
{

B ∈ Rd | |B| ≥ ε
}

and B̃d(ε) :=
{

B ∈ R̃d | |B| ≥ ε
}
.

Notice that these collections are infinite, and we use a usual approach and approximate them by 
finite collections. Following [10], we define a δ-approximations, which is a slight modification of the 
notion introduced in [9]. An essentially same notion was recently considered in a similar context by 
M. Gnewuch [6].

Definition 3.1 (δ-approximation of Bd(ε) and B̃d(ε)). For 0 < δ ≤ ε ≤ 1 we say that a collection N ⊆Rd
is a δ-approximation for Bd(ε) iff for all B ∈ Bd(ε) there is B0 ∈ N such that B0 ⊆ B and |B0| ≥ δ. 
We define a δ-approximation for B̃d(ε) in a similar way.
4
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Fig. 1. Current best known upper bounds on N(ε,d).

In several works on minimal dispersion a variant of the following probabilistic lemma was a key 
ingredient (Theorem 1 in [14], Lemma 2.3 with Remark 2.4 in [9], Lemma 2.2 in [10]).

Lemma 3.2. Let d ≥ 1 and ε, δ ∈ (0, 1). Let N be a δ-approximation for Bd(ε) and let Ñ be a δ-approximation 
for B̃d(ε). Assume both |N | ≥ 3 and |Ñ | ≥ 3. Then

N(ε,d) ≤ 3 ln |N |
δ

and Ñ(ε,d) ≤ 3 ln |Ñ |
δ

.

Moreover, the random choice of independent points (with respect to the uniform distribution on Q d) gives the 
result with probability at least 1 − 1/|N |.

Our next lemma improves the bounds of Lemma 3.2. We would like to emphasize that our proof 
uses two phases: the first random phase similar to the initial proof of Lemma 3.2 followed up by the 
second non-random phase. Notice that unlike Lemma 3.2, the bounds in Lemma 3.3 will not hold for 
a random choice of independent points in Q d , in view of (2).

Lemma 3.3. Let d ≥ 1, 0 < δ ≤ 1/3, δ ≤ ε ≤ 1. Let N be a δ-approximation for Bd(ε) and let Ñ be a δ-
approximation for B̃d(ε). Provided δ|N | ≥ e and δ|Ñ | ≥ e we have

N(ε,d) ≤ ln(4δ|N |)
δ

and Ñ(ε,d) ≤ ln(4δ|Ñ |)
δ

.

Proof. We prove the bound for N(ε, d), the proof for Ñ(ε, d) is similar. Let |N | = N . It is sufficient to 
show that there is P ⊂ Q d with |P | ≤ (ln(4δ|N |)/δ such that disp(P ) ≤ ε. To show that disp(P ) ≤ ε
it is sufficient to show that for all A ∈ N , we have A ∩ P �= ∅.

Let M be a positive integer which will be specified later. Consider a collection X = {x1, . . . , xM} of 
points in Q d chosen independently and uniformly at random from Q d .

For each A ∈N consider the “bad” event B A = {A ∩X = ∅}. By assumptions on the volume of sets 
in N and by independence of xi ’s, for all A ∈N we have P (B A) ≤ (1 − δ)M .

Next let b = b(X ) be the random variable that counts the number of bad events, i.e., b counts the 
number of sets in N that do not intersect X . Clearly,

b =
∑
A∈N

χB A ,

where χE denotes the indicator of the event E . Then

Eb =
∑

EχB A ≤ N(1 − δ)M .
A∈N

5
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Therefore there is an instance Q = {x1, . . . , xM} ⊂ Q d for which b(Q ) ≤ N(1 − δ)M . In other words, 
the set N0 := {A ∈N | A ∩ Q = ∅} satisfies |N0| ≤ N(1 − δ)M .

Finally, let Q 0 be a minimal collection of points which has a non-empty intersection with every 
set in N0 (we always have |Q 0| ≤ |N0|), and define P = Q ∪ Q 0. Then, by construction, for all A ∈N , 
we have A ∩ P �= ∅.

Note that

|P | ≤ M + N(1 − δ)M ≤ M + Ne−δM ,

and choose

M =
⌈

ln(δN)

δ

⌉
.

Then

|P | ≤ 1

δ
+ ln(δN)

δ
+ 1 ≤ ln(e1+δδN)

δ
,

which completes the proof. �
Remark. Note that in order to have a random choice of points, i.e., in order to show that for all 
A ∈ N one has A ∩ X �= ∅, one needs to work with the event b = 0. It is easy to see that for M =
(3 ln |N |)/δ� one has

P (b = 0) ≥ 1 − 1

|N | .
This proves Lemma 3.2 which was used in [14,9,10].

4. Completing the proof of Theorem 2.1

To complete the proof we use the following result from [10] (Propositions 3.2 and 3.3).

Proposition 4.1. Let d ≥ 2 be an integer, ε ∈ (0, 1), and γ > 0. Let δ = ε1+γ /4. There exists a δ-
approximations N for Bd(ε) and Ñ for B̃d(ε) of cardinalities

|N | ≤ 7d ln d
(1 + 1/γ )d(ln(e/ε1+γ ))d

ε1+γ
and |Ñ | ≤ 7d ln d

(1 + 1/γ )d(2d)d

ε1+γ
.

The proof of Theorem 2.1 is a straightforward application of Lemma 3.3 and Proposition 4.1. We 
provide it here for the sake of completeness.

Proof of Theorem 2.1. Let γ = 1/ ln(1/ε). Then ε1+γ = ε/e. Let δ = ε1+γ /4 = ε/(4e). Let N and Ñ
be δ-approximations constructed in Proposition 4.1 with cardinalities

|N | ≤ 7d ln d
(1 + 1/γ )d (ln(e/ε1+γ ))d

ε1+γ
≤ 7ed ln d

(ln(e/ε))d (ln(e2/ε))d

ε

and

|Ñ | ≤ 7d ln d
(1 + 1/γ )d(2d)d

ε1+γ
≤ 7ed ln d

(ln(e/ε))d (2d)d

ε
.

Then

ln(4δ|N |) ≤ 2d ln ln(e2/ε) + ln(7d ln d) ≤ 4d ln ln(8/ε)

and
6
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ln(4δ|Ñ |) ≤ d ln ln(e/ε) + d ln(2d) + ln(7d ln d) ≤ 2d (ln ln(e/ε) + ln(2d)) .

Hence, Lemma 3.3 now implies the result. �
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