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Solution to Part II, 2010.

1. We have 11x + 5y + 3(100 − x − y) = 1000 or 4x + y = 350. Since y ≥ 0, we get x ≤ 87.
Since x + y ≤ 100, we also have that 3x ≥ 250, so x ≥ 84. Thus the only solutions are
(x, y) = (84, 14), (85,10), (86,6) and (87,2).

2. For either (a) or (b), clearly the leading coefficient t of the quadratic must be positive.

(a) For the inequality to hold for all real x, the discriminant must be non-positive, that is,

0 ≥ (2t − 1)2 − 4t(5t − 1) = 1 − 16t2 = (1 − 4t)(1 + 4t).

Since t > 0, 1 + 4t > 0, so we need 1 − 4t ≤ 0. Thus t ≥ 1
4
.

(b) We now have the additional possibility that the two roots of the quadratic are real and
non-positive. This holds if and only if 0 < t ≤ 1

4
, 2t − 1 ≤ 0 and 5t − 1 ≥ 0. This is

equivalent to 1
5
≤ t ≤ 1

4
. Combining with the answer to (a), we have t ≥ 1

5
.

3. First Solution:
Putting AB = BC = b and CD = c, we get AD = b + c. Let 6 BAD = α. Since ABCD
is cyclic, 6 BCD = 180◦ − α. Applying the cosine law to triangles BAD and BCD, we have
BD2 = b2+(b+c)2−2b(b+c) cos α and BD2 = b2 +c2−2bc cos(180◦−α) = b2 +c2 +2bc cos α.
Hence b2 + (b + c)2 − 2b(b + c) cos α = b2 + c2 + 2bc cos α, so that b2 + 2bc = (2b2 + 4bc) cos α.
This yields cos α = 1

2
, so that α = 60◦ is the only possibility.
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Second Solution:
Let E be the point on AD such that DE = DC, so that AE = AD−DE = BC = AB. Now
6 BDE = 6 BDC since they are subtended by the equal arcs BA and BC. It follows that
triangles BED and BCD are congruent, so that BE = BC = BA = AE, triangle BAE is
equilateral and 6 BAD = 60◦.

4. First Solution:
The area of the punctured board is 22n −1. The base-2 representation of this number consists
of 2n 1s. Since the area of each rectangle in the partition is a power of 2, we must have at
least 2n rectangles. There exist such partitions with exactly 2n rectangles. Divide the board
in halves by a horizontal grid line. Set aside the one with the missing square and cover the
other with a rectangle of height 2n−1. Repeating the process with the strips set aside, we
obtain rectangles with decreasing heights 2n−2, 2n−3, . . . , 21 and 20, a total of n rectangles.
We now divide the resulting 2n × 1 board in halves by a vertical line. Set aside the one with
the missing square and cover the other with a rectangle of width 2n−1. Repeating the process
with the strips set aside, we obtain another n rectangles with decreasing widths, for a total
of 2n rectangles in the overall partition.



Second Solution:
Divide the board into four congruent quadrants. Set aside the one with the missing square.
Merge two of the other quadrants into one rectangle and keep the third quadrant as the second
rectangle. In reducing a 2n ×2n board down to a 2n−1 ×2n−1 board, we use two rectangles. It
follows that we will use exactly 2n rectangles in the overall partition. We now prove that we
cannot get by with a smaller number. The area of a rectangle of the prescribed type is a power
of 2. The smallest has area 1, and the largest has area 22n−1. Thus there are 2n different sizes.
If we use one of each size, the total area of these 2n rectangles is 1+2+ · · ·+22n−1 = 22n − 1,
exactly the size of the punctured chessboard. Consider any other collection of rectangles
whose areas are powers of 2 and whose total area is 22n−1 − 1. Replace any pair of rectangles
of equal area by one with twice the area. Repeat until no further replacement is possible. The
resulting collection consists of rectangles of distinct areas which are powers of 2, and with
total area 22n−1 − 1. It can only be our collection, and since mergers only reduce the number
of rectangles, 2n is indeed minimum.

5. (a) Note that f(M +m)−f(m) is a sum of terms of the form ak((M +m)k−mk) where ak is
the coefficient of the term xk in f(x). Since each term is divisible by M = (M +m)−m,
so is f(M + m)− f(m). Since M is divisible by f(m), f(M + m)− f(m) is divisible by
f(m). It follows that f(M + m) is divisible by f(m).

(b) Since all the coefficients of f are non-negative and f is non-constant, it is strictly increas-
ing. Let M = f(2)f(3) and n = M + 2. By (a), f(n) is divisible by f(2) and f(n + 1)
is divisible by f(3). Since f(n + 1) > f(n) > f(3) > f(2) > f(1) ≥ 1, both f(n) and
f(n + 1) are composite.


