1. Of Melissa’s ducks, \(x\% \) have 11 ducklings each, \(y\% \) have 5 ducklings each and the rest have 3 ducklings each. The average number of ducklings per duck is 10. Determine all possible \emph{integer} values of \(x \) and \(y \).

2. (a) Find all real numbers \(t \neq 0 \) such that \(tx^2 - (2t - 1)x + (5t - 1) \geq 0 \) for all real numbers \(x \).

 (b) Find all real numbers \(t \neq 0 \) such that \(tx^2 - (2t - 1)x + (5t - 1) \geq 0 \) for all \(x \geq 0 \).

3. Points \(A, B, C \) and \(D \) lie on a circle in that order, so that \(AB = BC \) and \(AD = BC + CD \). Determine \(\angle BAD \).

4. Let \(n \) be a positive integer. A \(2^n \times 2^n \) board, missing a \(1 \times 1 \) square anywhere, is to be partitioned into rectangles whose side lengths are integral powers of 2. Determine in terms of \(n \) the smallest number of rectangles among all such partitions, wherever the missing square may be.

5. Let \(f \) be a non-constant polynomial with non-negative integer coefficients.

 (a) Prove that if \(M \) and \(m \) are positive integers such that \(M \) is divisible by \(f(m) \), then \(f(M + m) \) is also divisible by \(f(m) \).

 (b) Prove that there exists a positive integer \(n \) such that each of \(f(n) \) and \(f(n + 1) \) is a composite number.