The Alberta High School Mathematics Competition Part II, February 3, 2010

1. Of Melissa's ducks, $x \%$ have 11 ducklings each, $y \%$ have 5 ducklings each and the rest have 3 ducklings each. The average number of ducklings per duck is 10 . Determine all possible integer values of x and y.
2. (a) Find all real numbers $t \neq 0$ such that $t x^{2}-(2 t-1) x+(5 t-1) \geq 0$ for all real numbers x.
(b) Find all real numbers $t \neq 0$ such that $t x^{2}-(2 t-1) x+(5 t-1) \geq 0$ for all $x \geq 0$.
3. Points A, B, C and D lie on a circle in that order, so that $A B=B C$ and $A D=B C+C D$. Determine $\angle B A D$.
4. Let n be a positive integer. A $2^{n} \times 2^{n}$ board, missing a 1×1 square anywhere, is to be partitioned into rectangles whose side lengths are integral powers of 2. Determine in terms of n the smallest number of rectangles among all such partitions, wherever the missing square may be.
5. Let f be a non-constant polynomial with non-negative integer coefficients.
(a) Prove that if M and m are positive integers such that M is divisible by $f(m)$, then $f(M+m)$ is also divisible by $f(m)$.
(b) Prove that there exists a positive integer n such that each of $f(n)$ and $f(n+1)$ is a composite number.
