Alberta High School Mathematics Competition

Second Round February 7, 2007.

Problem 1.

Determine all positive integers n such that n is divisible by any positive integer m which satisfies $m^{2}+4 \leq n$.

Problem 2.

The numbers $1,2,3,4,5,6,7,8,9,10,11,12,13,14$ and 15 are arranged to form a 5×3 table in each of the 15 ! possible ways. For each table, we compute the sum of the three numbers in each row, and record in a list the largest and the smallest of these sums. Determine the sum of the 2×15 ! numbers on our list.

Problem 3.

One angle of a triangle is 36° while each of the other two angles is also an integral number of degrees. The triangle can be divided into two isosceles triangles by a straight cut. Determine all possible values of the largest angle of this triangle.

Problem 4.

Let a, b and c be distinct non-zero real numbers such that $\frac{1-a^{3}}{a}=\frac{1-b^{3}}{b}=\frac{1-c^{3}}{c}$. Determine all possible values of $a^{3}+b^{3}+c^{3}$.

Problem 5.

A survey in Alberta was sent to some teachers and students, a total of $2006=2 \times 17 \times 59$ people. Exactly $a \%$ of the teachers and exactly $b \%$ of the students responded, yielding an overall response rate of exactly $c \%$, where a, b and c are integers satisfying $0<a<c<b<100$. For each possible combination of values of a, b and c, determine the total number of teachers and the total number of students who responded to the survey.

