Alberta High School Mathematics Competition

1. A positive integer has 1001 digits all of which are 1s. When this number is divided by 1001, the remainder is
(a) 1
(b) 10
(c) 11
(d) 100
(e) none of these
2. Some cats have got into the pigeon loft because the total head count is 34 but the total leg count is 80 . The number of cats among the pigeons is
(a) 6
(b) 12
(c) 17
(d) 22
(e) 28
3. In triangle $A B C, A B \leq 1 \leq B C \leq 2 \leq C A \leq 3$. The maximum area of triangle $A B C$ is
(a) 1
(b) $\frac{3}{2}$
(c) 2
(d) $\frac{5}{2}$
(e) none of these
4. The number of ways in which five As and six Bs can be arranged in a row which reads the same backwards and forwards is
(a) 1
(b) 5
(c) 10
(d) 15
(e) none of these
5. Among twenty consecutive integers each at least 9 , the maximum number of them that can be prime is
(a) 4
(b) 5
(c) 6
(d) 7
(e) 8
6. The non-negative numbers x and y are such that $2 x+y=5$. The sum of the maximum value of $x+y$ and the minimum value of $x+y$ is
(a) 0
(b) $\frac{5}{2}$
(c) 5
(d) $\frac{15}{2}$
(e) none of these
7. We wish to choose some of the positive integers from 1 to 1000 inclusive, such that no two differ by 3 or 5 . The maximum number of positive integers we can choose is
(a) 200
(b) 300
(c) 333
(d) 500
(e) none of these
8. The number of polynomials p with integral coefficients such that $p(9)=13$ and $p(13)=20$ is
(a) 0
(b) 1
(c) 2
(d) 3
(e) infinitely many
9. In the quadrilateral $A B C D, A B=C D, A D=2$ and $B C=6 . A D$ and $B C$ are parallel lines at a distance 8 apart. The radius of the smallest circle which can cover $A B C D$ is
(a) $\sqrt{18}$
(b) $\sqrt{20}$
(c) $\frac{\sqrt{85}}{2}$
(d) 5
(e) none of these
10. The number of pairs (a, b) of positive integers such that all three roots of the cubic equation $x^{3}-10 x^{2}+a x-b=0$ are positive integers is
(a) 3
(b) 8
(c) 10
(d) 66
(e) none of these
11. The real numbers x and y are such that $x+\frac{2}{y}=\frac{8}{3}$ and $y+\frac{2}{x}=3$. The value of $x y$ is
(a) $\frac{3}{2}$
(b) $\frac{4}{3}$
(c) 2
(d) 4
(e) not uniquely determined
12. Let θ be an acute angle such that $\sec ^{2} \theta+\tan ^{2} \theta=2$. The value of $\csc ^{2} \theta+\cot ^{2} \theta$ is
(a) 2
(b) 3
(c) 4
(d) 5
(e) none of these
13. The diameter $A C$ divides a circle into two semicircular arcs. B is the midpoint of one these arcs, and D is any point on the other arc. If the area of $A B C D$ is 16 square centimetres, the distance, in centimetres, from B to $A D$ is
(a) 2
(b) $2 \sqrt{2}$
(c) 4
(d) $4 \sqrt{2}$
(e) dependent on the radius of the circle
14. Five students took part in a contest consisting of six true-or-false questions. Student $\# i$ gave the answer T to question $\# j$ if and only if $i<j$. The total number of incorrect answers is 8 or 9 , and there are more incorrect answers of T than incorrect answers of F . The student who has both an incorrect answer of T and an incorrect answer of F is
(a) \#1
(b) \#2
(c) $\# 3$
(d) \#4
(e) $\# 5$
15. An integer n is randomly chosen from 10^{99} to $10^{100}-1$ inclusive. The real number m is defined by $m=\frac{9 n}{5}$. Of the following five numbers, the one closest to the probability that $10^{99} \leq m \leq 10^{100}-1$ is
(a) $\frac{1}{3}$
(b) $\frac{4}{9}$
(c) $\frac{1}{2}$
(d) $\frac{5}{9}$
(e) $\frac{2}{3}$
16. The smallest value of the real number k such that $\left(x^{2}+y^{2}+z^{2}\right)^{2} \leq k\left(x^{4}+y^{4}+z^{4}\right)$ holds for all real numbers x, y and z is
(a) 1
(b) 2
(c) 3
(d) 6
(e) 9
