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Abstract

Sharp universal bounds are given for the distance between normalised Lebesgue measure on
R/Z and the distribution of logX mod 1, where X is uniform. The results dispel the popular
belief that a random variable obeys Benford’s Law (at least approximately) whenever its spread
is large.

For every real number x, the largest integer not larger than x will be denoted by ⌊x⌋, and
JxK := x− ⌊x⌋ is the fractional (or non-integer) part of x. The base γ logarithm (γ > 1) of x > 0
is logγ x; if used without a subscript, log symbolises the natural logarithm. The sets of natural,
non-negative integer, integer, positive real and real numbers are N, N0, Z, R

+ and R, respectively.
Given any probability measure µ on R, denote by Fµ its distribution function, that is, Fµ(x) =

µ(] − ∞, x]). For every measurable map T : R → R the probability measure Tµ is defined as
Tµ(B) := µ

(

T−1(B)
)

for all Borel sets B. Specifically, JµK is, for every µ, concentrated on [0, 1].
The uniform distribution on [a, b] with a < b is denoted by Ua,b. Thus

FUa,b
(x) =















0 if x < a ,
x− a

b− a
if a ≤ x < b ,

1 if x ≥ b .

Given any two probability measures µ, ν on R, their Kolmogorov–Smirnov distance d∞(µ, ν) is

d∞(µ, ν) = supx∈R

∣

∣Fµ(x) − Fν(x)
∣

∣ ;

see e.g. [5] for some details on this metric. Recall that µ with µ(R+) = 1, or a real random
variable with distribution µ, satisfies Benford’s Law base γ if and only if logγ µ is uniform modulo
one [2], i.e., if d∞(Jlogγ µK, U0,1) equals zero. Contrary to what [4, p.63] may suggest, the uniform
distribution Ua,b with a ≥ 0 does not even approximately satisfy Benford’s Law for any base γ,
no matter how large b− a is.

Theorem 1. For all γ > 1 and 0 ≤ a < b,

d∞
(

Jlogγ Ua,bK, U0,1

)

≥ Cγ > 0 , (1)

where

Cγ =
1 − γ + log γ + (γ − 1) log(γ − 1) − (γ − 1) log log γ

2(γ − 1) log γ
.
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Proof. To verify (1), assume first that a = 0, and let l := ⌊logγ b⌋ and δ := Jlogγ bK. Thus b = γl+δ,
and

Flogγ U0,b
(x) =







γx

b
if x < l + δ ,

1 if x ≥ l + δ ,

from which it follows that, for all 0 ≤ x ≤ 1,

FJlogγ U0,bK(x) =
∑

k∈Z

(

Flogγ U0,b
(x+ k) − Flogγ U0,b

(k)
)

=



















γ1+x−δ − γ1−δ

γ − 1
if 0 ≤ x < δ ,

1 −
γ1−δ − γx−δ

γ − 1
if δ ≤ x ≤ 1 .

Notice that FJlogγ U0,bK does not depend on l. For the sake of brevity, let fδ(x) := FJlogγ U0,bK(x) and

gδ(x) := fδ(x)−x for all x and δ. Note that fδ is convex on [0, δ] and on [δ, 1], and f0(x) =
γx − 1

γ − 1
,

whereas for 0 < δ < 1

f ′δ(0+) = f ′δ(1−) =
γ1−δ log γ

γ − 1
.

In the latter case, there exists a unique 0 < δ∗ < 1 such that f ′δ∗(0+) = f ′δ∗(1−) = 1; explicitly
γ1−δ∗ = (γ − 1)/ log γ, and thus

δ∗ =
log γ − log(γ − 1) + log log γ

log γ
.

Consequently, for 0 < δ < 1 the graph of fδ can have three qualitatively different forms.
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0 < δ < δ∗ δ = δ∗ δ∗ < δ < 1

Note that gδ always attains its maximum at x = δ. This suggests introducing the auxiliary
function ψ according to

ψ(δ) := gδ(δ) = fδ(δ) − δ =
γ − γ1−δ

γ − 1
− δ .

It follows from

ψ′(δ) =
γ1−δ log γ

γ − 1
− 1 = γδ∗−δ − 1 ,

that ψ is concave, with ψ(0) = ψ(1) = 0 and ψ′(δ∗) = 0. Hence ψ(δ) > 0 for all 0 < δ < 1, and

max0≤δ≤1 ψ(δ) = ψ(δ∗) =
γ − γ1−δ∗

γ − 1
− δ∗ =

γ log γ − γ + 1

(γ − 1) log γ
− δ∗ = 2Cγ .
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Assume first that 0 ≤ δ ≤ δ∗. In this case, the function gδ has a non-positive minimum at
x = 1 + δ − δ∗ > δ, with

gδ(1 + δ − δ∗) = 1 −
γ1−δ − γ1−δ∗

γ − 1
− 1 − δ + δ∗ = ψ(δ) − ψ(δ∗) ,

showing that max0≤x≤1 gδ(x) = ψ(δ) as well as −min0≤x≤1 gδ(x) = ψ(δ∗) − ψ(δ). Similarly, if
δ∗ < δ < 1 then gδ has a negative minimum at x = δ − δ∗ < δ, with

gδ(δ − δ∗) =
γ1−δ∗ − γ1−δ

γ − 1
− δ + δ∗ = ψ(δ) − ψ(δ∗) .

For all 0 ≤ δ < 1, therefore,

max0≤x≤1 gδ(x) = ψ(δ) , −min0≤x≤1 gδ(x) = ψ(δ∗) − ψ(δ) ,

and consequently

max0≤x≤1 |gδ(x)| = max
{

ψ(δ), ψ(δ∗) − ψ(δ)
}

≥ 1
2
ψ(δ∗) = Cγ ,

which establishes (1) for the case a = 0.
To verify (1) for a > 0 assume for the time being that logγ a = k ∈ Z, and let l := ⌊logγ b⌋ and

δ := Jlogγ bK as before; for convenience set m := l − k ∈ N0. A short computation confirms that

fm,δ(x) := FJlogγ Ua,bK(x) =



















γx − 1

γ − 1
·
γm+1 − 1

γm+δ − 1
if 0 ≤ x < δ ,

1 −
γ − γx

γ − 1
·
γm − 1

γm+δ − 1
if δ ≤ x ≤ 1 .

Notice that fm,δ → fδ uniformly on [0, 1] as m→ ∞. Let again gm,δ(x) := fm,δ(x)−x and observe
that

gm,δ(x) − gδ(x) = fm,δ(x) − fδ(x) = ∆m,δ(x) ,

where ∆m,δ is given by

∆m,δ(x) =



















γx − 1

γ − 1
·
γ1−δ − 1

γm+δ − 1
if 0 ≤ x < δ ,

γ1−δ − γx−δ

γ − 1
·
γδ − 1

γm+δ − 1
if δ ≤ x ≤ 1 .

Obviously, ∆m,δ ≥ 0 with ∆m,δ(0) = ∆m,δ(1) = 0, and ∆m,0 = 0 for all m ≥ 1. Furthermore, for
0 < δ < 1 the function ∆m,δ is convex and increasing on [0, δ], and concave and decreasing on
[δ, 1]. Since both gδ and ∆m,δ attain their respective maximal value at x = δ,

max0≤x≤1 gm,δ(x) = gm,δ(δ) = gδ(δ) + ∆m,δ(δ) = ψ(δ) + ∆m,δ(δ) .

If 0 ≤ δ ≤ δ∗ then, with the appropriate 0 ≤ ξ ≤ 1,

max0≤x≤1 gm,δ(x) − min0≤x≤1 gm,δ(x) = gm,δ(δ) − gm,δ(ξ)

≥ gm,δ(δ) − gm,δ(1 + δ − δ∗)

= ψ(δ) + ∆m,δ(δ) − gδ(1 + δ − δ∗) − ∆m,δ(1 + δ − δ∗)

= ψ(δ∗) + ∆m,δ(δ) − ∆m,δ(1 + δ − δ∗)

≥ ψ(δ∗)

= 2Cγ .
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The same argument applies for δ∗ < δ < 1 with 1 + δ − δ∗ replaced by δ − δ∗. Thus

max0≤x≤1 gm,δ(x) − min0≤x≤1 gm,δ(x) ≥ 2Cγ (2)

holds for all m ∈ N0 and 0 ≤ δ < 1, and this in turn implies (1) since

max0≤x≤1 |gm,δ(x)| ≥
1
2

(

max0≤x≤1 gm,δ(x) − min0≤x≤1 gm,δ(x)
)

≥ Cγ .

Overall, therefore, the proof is complete if a = 0 or logγ a ∈ Z.
Finally, assume that a > 0 does not satisfy logγ a ∈ Z, that is, the number τ := Jlogγ aK lies

strictly between 0 and 1. Note that

Jlogγ Ua,bK = Jlogγ Uaγ−τ ,bγ−τ + τK ,

and clearly logγ(aγ−τ ) ∈ Z. It is readily verified that, for every non-atomic probability measure
µ on R and every t ∈ R,

FJµ+tK(x) =

{

FJµK(x+ 1 − JtK) − FJµK(1 − JtK) if 0 ≤ x < JtK ,

FJµK(x− JtK) + 1 − FJµK(1 − JtK) if JtK ≤ x ≤ 1 ,

and therefore also

GJµ+tK(x) =

{

GJµK(x+ 1 − JtK)−GJµK(1 − JtK) if 0 ≤ x < JtK ,

GJµK(x− JtK) −GJµK(1 − JtK) if JtK ≤ x ≤ 1 ,

where generally Gµ(x) := Fµ(x) − x. In particular,

max0≤x≤1GJµ+tK(x) − min0≤x≤1GJµ+tK(x) = max0≤x≤1GJµK(x) − min0≤x≤1GJµK(x) , (3)

which merely expresses the intuitively obvious fact that the span (i.e. the difference between
maximal and minimal value) of GJµK is not affected by the rotation caused by adding (modulo
one) any number t. With the notation introduced earlier, GJlogγ U

aγ−τ ,bγ−τ K = gm,δ , where m =

⌊logγ b/a⌋ and δ = Jlogγ b/aK. Combining (2) and (3) for µ = logγ Uaγ−τ ,bγ−τ and t = τ therefore
yields

max0≤x≤1GJlogγ Ua,bK(x) − min0≤x≤1GJlogγ Ua,bK(x) ≥ 2Cγ .

This completes the proof. 2

Remark 2. (i) As the above argument shows, the constant Cγ in (1) is best possible: For every
C > Cγ there exist a, b with 0 < a < b such that d∞(Jlogγ Ua,bK, U0,1) < C.

(ii) It follows from the first part of the proof of Theorem 1 that, for all γ > 1 and b > 0,

d∞
(

Jlogγ U0,bK, U0,1

)

= Ψ(logγ b) ,

with the continuous, 1-periodic function Ψ : x 7→ max
{

ψ(JxK), 2Cγ−ψ(JxK)
}

= Cγ +|ψ(JxK)−Cγ |.
(iii) Note that γ 7→ Cγ is monotonically increasing, with limγ→1+Cγ = 0 and limγ→∞Cγ = 1

2
.

For γ = 10, the most important special case in view of Benford’s Law, one finds C10 ≈ 0.13442.
(iv) Satisfactory though it may be, Theorem 1 has a small shortcoming: For every probability

measure µ on R, the measure JµK naturally lives on T = R/Z rather than on [0, 1], but d∞ is
unsuitable for measures on T. Specifically, T is a compact metric space when endowed with the
metric d(x+ Z, y + Z) := mink∈Z |x− y + k|, and consequently P(T), the space of all probability
measures on T with the topology of weak convergence, is compact and metrizable [3]. A natural
metric inducing this topology is the Kantorovich–Wasserstein distance dK defined as

dK(µ, ν) := sup

{∣

∣

∣

∣

∫

T

f dµ−

∫

T

f dν

∣

∣

∣

∣

: f ∈ CR(T),Lipf ≤ 1

}

.
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Unlike d∞, the metric dK on P(T) is invariant under isometries of T: If T : T → T is any isometry,
then dK(Tµ, Tν) = dK(µ, ν) for all µ, ν ∈ P(T). Explicit practicable formulae for dK have been
derived in [1]. A truly satisfactory variant of Theorem 1, therefore, would consider Jlogγ Ua,bK an
element of P(T) and provide a lower bound for its distance from λT, the uniform distribution on
T. Such a result can indeed be achieved using parts of the proof of Theorem 1 even though the
necessary calculations are significantly more involved. The final result, however, is even slightly
simpler than (1): For all γ > 1 and 0 ≤ a < b,

dK

(

Jlogγ Ua,bK, λT

)

≥ logγ
1+

√
γ

2
− 1

4
=: 1

4
Φ(1

4
log γ) > 0 , (4)

where Φ is the real-analytic odd function Φ(x) = x−1 log coshx; as in the case of (1), the inequality
(4) is best possible in the sense of (i).
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