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Abstract

Feller’s classic text An Introduction to Probability Theory and its Applications contains a

derivation of the well known significant-digit law called Benford’s law. More specifically,

Feller gives a sufficient condition (“large spread”) for a random variable X to be approxi-

mately Benford distributed, that is, for log
10

X to be approximately uniformly distributed

modulo one. This note shows that the large-spread derivation, which continues to be widely

cited and used, contains serious basic errors. Concrete examples and a new inequality clearly

demonstrate that large spread (or large spread on a logarithmic scale) does not imply that

a random variable is approximately Benford distributed, for any reasonable definition of

“spread” or measure of dispersion.
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In probability and statistics, a correct general explanation of a principle is often as valuable as

a detailed formal argument. In his December 2009 column in the IMS Bulletin, UC Berkeley

statistics professor T. Speed extols the virtues of derivations in statistics (Speed 2009):

I think in statistics we need derivations, not proofs. That is, lines of reasoning from

some assumptions to a formula, or a procedure, which may or may not have certain

properties in a given context, but which, all going well, might provide some insight.

For illustration, Speed quotes two examples of the convolution property for the Gamma and

Cauchy distributions from the classic 1966 text An Introduction to Probability Theory and Its

Applications by W. Feller.

On page 63, Feller (1966) also gave a brief derivation, in Speed’s sense, of the well known

logarithmic distribution of significant digits called Benford’s law (Benford 1938; Fewster 2009;

Hill 1995a,b; Newcomb 1881; Raimi 1976). Recall that if a random variable is Benford (i.e. has

a Benford distribution) then its first significant digit is “1” with probability log10 2 ≈ 0.3010;

similar expressions hold for the general joint Benford distributions of all the significant digits

(Hill 1995a). For the purposes of this note, a simple and very useful characterization of a

Benford distribution is

(1) A positive random variable X is Benford if and only if log10 X is uniformly distributed

(mod 1).

Since Feller has inspired so many who teach probability and statistics today, and since many

undergraduate courses now include a brief introduction to Benford’s law, it is not surprising

that Feller’s derivation is still in frequent use to provide some insight about Benford’s law. For

example, a class project report for a 2009 upper-division course in statistics at UC Berkeley

(Aldous and Phan 2009, p.3) said

. . . like the birthday paradox, an explanation [of Benford’s law] occurs quickly to

those with appropriate mathematical background . . .To a mathematical statistician,

Feller’s paragraph says all there is to say . . . Feller’s derivation has been common

knowledge in the academic community throughout the last 40 years.

The online database (Berger and Hill 2009) lists about twenty published references since 2000
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alone to Feller’s argument (e.g. Aldous and Phan 2009; Fewster 2009) the crux of which is

Feller’s claim (trivially edited) that

(2) If the spread of a random variable X is very large, then log10 X (mod 1) will be approxi-

mately uniformly distributed on [0, 1).

The implication of (1) and (2) is that all random variables with large spread will be approxi-

mately Benford distributed. That sounds quite plausible, but as C.S. Pierce observed (Gardner

1959, p.174), “in no other branch of mathematics is it so easy for experts to blunder as in prob-

ability theory”. Indeed, even Feller blundered on Benford’s law, and took many experts with

him. Claim (2) is simply false under any reasonable definition of spread or measure of disper-

sion, including range, interquantile range (or distance between the (1−α)- and the α-quantile),

standard deviation, or mean difference (Gini coefficient), no matter how smooth or level a den-

sity the random variable X may have. To see this, one does not have to look far. Concretely,

no positive uniformly distributed random variable even comes close to being Benford, regard-

less of how large (or small) its spread is. This statement can be quantified explicitly via the

following new inequality; for its formulation, recall that the Kolmogorov-Smirnoff distance

dKS(X,Y ) between two random variables X and Y with cumulative distribution functions F

and G, respectively, is dKS(X,Y ) = sup{|F (x) − G(x)| : x ∈ R}.

Proposition 1 (Berger 2010). For every positive uniformly distributed random variable X,

dKS

(

log10 X (mod 1), U(0, 1)
)

≥
−9 + ln 10 + 9 ln 9 − 9 ln ln 10

18 ln 10
= 0.1334 . . . ,

and this bound is sharp.

There is nothing special about the usage of the Kolmogorov-Smirnoff distance or decimal

base in this regard; similar universal bounds hold for the Wasserstein distance, for example, and

other bases. Another way to see that (2) is false, in the discrete and significant-digit setting,

is to observe that no matter how large n is, an integer-valued random variable uniformly

distributed on the first 2 · 10n positive integers will have more than 50% of its values beginning

with a “1”, as opposed to the Benford probability of about 30%.

How could Feller’s error have persisted in the academic community, among students and

experts alike, for over 40 years? Part of the reason, as one colleague put it, is simply that Feller,

after all, is Feller, and Feller’s word on probability has just been taken as gospel. Another reason
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for the long-lived propagation of the error has apparently been the confusion of (2) with the

similar claim

(3) If the spread of a random variable X is very large, then X (mod 1) will be approximately

uniformly distributed on [0, 1).

For example, (Aldous and Phan 2009, p.3) cites Feller’s claim (2), but (Aldous and Phan 2009,

p.8) cites Feller’s claim as (3). A third possible explanation for the persistence of the error is

the common assumption that (3) implies (2). For example, Gauvrit and Delahaye (2009, p.1)

state:

An elementary new explanation has recently been published, based on the fact that

any X whose distribution is “smooth” and “scattered” enough is Benford. The

scattering and smoothness of usual data ensures that log(X) is itself smooth and

scattered, which in turn implies the Benford characteristic of X.

Now (3) is also intuitive and plausible, but unlike (2), it is often accurate if the distribution is

fairly uniform. And if the distribution is not fairly uniform, then without further information,

no interesting conclusions at all can be made about the significant digits — most of the values

could for instance start with a “7”. Since X has very, very large spread if and only if log X has

very large spread, on the surface (2) and (3) appear to be equivalent. After all, what difference

can one tiny extra “very” mean? On the other hand, as Proposition 1 clearly implies, they are

not the same, and (2) is false.

Although (3) is perhaps more accurate than (2), unfortunately it does not explain Benford’s

law at all, since the criterion in (1) says that X is Benford if and only if the logarithm of X

— and not X itself — is uniformly distributed (mod 1). Some authors partially explain the

ubiquity of Benford distributions based on an assumption of a “large spread on a logarithmic

scale” (e.g. Aldous and Phan 2009, 2010; Fewster 2009; Wagon 2010). Others (e.g. Aldous and

Phan 2010, p.17) claim that “what Feller obviously meant” [italics in original] by spread was

log spread, i.e. that when Feller wrote (2) he really meant to say that

(3’) If log10 X has very large spread, then log10 X (mod 1) will be approximately uniformly

distributed on [0, 1),
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which is but an unnecessarily convoluted version of (3). They then apply (3) or (3’) to conclude

that if log10 X has large spread, then X is approximately Benford. This avoids Feller’s error

(2), but still leaves open the question of why it is reasonable to assume that the logarithm of the

spread, as opposed to the spread itself or, say, the log log spread should be large. As seen above,

those assumptions contain a subtle difference, and lead to very different conclusions about the

distributions of the significant digits. Using the same logic, for instance, an assumption of

large spread on the log log scale would imply that log X is Benford, whereas none of the usual

Benford random variables such as Xk with densities 1/(x ln 10) on (10k, 10k+1) are also Benford

on the log scale. Moreover, via (1) and (3), assuming large spread on a logarithmic scale is

equivalent to assuming an approximate Benford distribution. Quite likely, Feller realized this,

and in (2) specifically did not hypothesize that the log of the range was large.

A related and apparently widespread misconception is that claim (2), notwithstanding its

incorrectness, or claim (3) implies that a larger spread or log spread automatically means closer

conformance to Benford’s law. For example, Wagon (2010) concludes that “datasets with large

logarithmic spread will naturally follow the law, while datasets with small spread will not”,

and the Conclusion of the study (Aldous and Phan 2010, p.12) states

On a small stage (18 data-sets) we have checked a theoretical prediction. Not just

the literal assertion of Benford’s law - that in a data-set with large spread on a

logarithmic scale, the relative frequencies of leading digits will approximately follow

the Benford distribution - but the rather more specific prediction that distance from

Benford should decrease as that spread increases. In one sense it’s not surprising

this works out.

But distance from the Benford distribution does not generally decrease as the spread increases,

regardless of whether the spread is measured on the original scale or on the logarithmic scale.

A simple way to see this is as follows: Let Y be a random variable uniformly distributed on

(0, 1), and let X = 10Y and Z = 103Y/2. Then by (1), X is exactly Benford, since log10 X = Y ,

and Z is not close to Benford since 3Y/2 (mod 1) is not close to uniform on (0, 1). Yet for

any reasonable definition of spread, including all those mentioned earlier, the spread of Z is

larger than the spread of X, and the spread of log10 Z = 3Y/2 is larger than the spread of

log10 X = Y . Another way to see that the distance from the Benford distribution does not
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decrease as the spread increases is contained in the proof of Proposition 1: For XT a random

variable uniformly distributed on (0, T ), it is shown that the Kolmogorov-Smirnoff distance

between log10 XT and U(0, 1) is a continuous 1-periodic function of log10 T . Moreover, when

employing a logarithmic scale it is important to keep in mind that what is considered large

generally depends on the base of the logarithm. For example, as noted earlier, if Y is uniformly

distributed on (0, 1) then X = 10Y is exactly Benford base 10, yet it is not Benford base 2

even though its spread on the log2-scale is log2 10 ≈ 3.3219 times as large.

It is interesting to note that when Feller credited Pinkham in his derivation in 1966, it was

not widely known that Pinkham’s argument (Pinkham 1961) for the scale-invariant character-

ization of Benford’s law also contains an irreparable and fundamental flaw. Raimi (1976, sec.

7) explains Pinkham’s error in detail, and credits Knuth (1997) for the discovery that the error

was in Pinkham’s unwritten implicit assumption that there exists a scale-invariant probability

distribution on the positive real numbers — when clearly there does not, since the largest

median of every positive random variable changes under changes of scale. The first correct

proof that the Benford distribution is the unique scale-invariant probability distribution on the

significant digits (and the unique continuous base-invariant distribution) is in (Hill 1995b).

In conclusion, classroom experiments based on Feller’s derivation or on an assumption of

large range on a logarithmic scale (e.g. Aldous and Phan 2009, 2010; Fewster 2009; Wagon

2010) should be used with caution. As an alternative or supplement, teachers might also ask

students to compare the significant digits in the first 20-30 articles in tomorrow’s New York

Times against Benford’s law, thereby testing real-life data against the explanation given in

the main theorem in (Hill 1995b) which, without any assumptions on magnitude of spread,

shows that mixing data from different distributions in an unbiased manner leads to a Benford

distribution.

Although some experts may still feel that “like the birthday paradox, there is a simple and

standard explanation” for Benford’s law (Aldous and Phan 2010, p.6) and that this explanation

occurs quickly to those with appropriate mathematical background, there does not appear to

be a simple derivation of Benford’s law that both offers a “correct explanation” (Aldous and

Phan 2010, p.7) and satisfies Speed’s goal to provide insight. In that sense, although Benford’s

law now rests on solid mathematical ground, most experts seem to agree with (Fewster 2009)

that its ubiquity in real-life data remains mysterious.
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