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Abstract

For all α > 0 and real random variables X, we establish sharp bounds for the smallest
and the largest deviation of αX from the logarithmic distribution also known as Benford’s
law. In the case of uniform X, the value of the smallest possible deviation is determined
explicitly. Our elementary calculation puts into perspective the recurring claims that a
random variable conforms to Benford’s law, at least approximately, whenever it has large
spread.
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1. Introduction

For every nonzero real number x, denote by S(x) the (decimal) significand of x, i.e. S(x)
is the unique number in S := [1, 10) satisfying |x| = S(x) × 10k with a (necessarily unique)
integer k; for convenience, letS(0) = 0. A real-valued random variableX is Benford (base 10) if

P{S(X) ≤ s} = log s for all s ∈ S; (1.1)

here and throughout, log denotes the decimal logarithm. Benford random variables represent
one major pathway into the study of Benford’s law, an intriguing, multi-faceted phenomenon
that attracts interest from a wide range of disciplines; see, for example, [3] for an introduction,
and [7] for a panorama of recent work. Note that if X is Benford, and D1(X) denotes the
leading (decimal) digit of X, then

P{D1(X) = d} = log
d + 1

d
for all d = 1, . . . , 9. (1.2)

Though the validity of this first-digit law is also sometimes referred to as Benford’s law, (1.2)
is clearly weaker than (1.1), and it turns out to be much less amenable to a fruitful analysis;
see, for example, [3] and [8].

While few random variables are Benford, many more may be perceived as being close to
satisfying (1.1). So compelling is this perception that it has spawned a considerable literature;
see, for example, [1], [5]–[7], and [9] and the references therein. One particularly popular line
of thinking in this regard suggests that if a random variable X has, in one sense or another,
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354 A. BERGER AND I. TWELVES

‘large spread’ then, under mild regularity assumptions, it will nearly satisfy (1.1) in that the
deviation

�X := sup
s∈S

|P{S(X) ≤ s} − log s| ∈ [0, 1] (1.3)

will be small. As documented in [2], quantitative results in this spirit can be traced back at least
to [4, pp. 61–64]. Though suggestive and mathematically correct, such results provide little
real insight into Benford’s law, especially its ubiquity throughout the sciences. In particular, the
catchy conclusion that ‘large spread implies Benford’s law’ is not only unsuitable for back-of-
the-envelope explanations of that phenomenon; taken literally, it is in fact wrong for virtually
every notion of large spread. Note also that, in statistical parlance,�X is simply the Kolmogorov
(or uniform) distance between S(X) and S(Y ) for any Benford random variable Y . To illustrate
�X with a concrete example, consider a real-valued random variable X with

P{X ≤ x} =

⎧⎪⎨⎪⎩
log x − x − 1

x
log e if 1 ≤ x < 10,

1 − 100 − x

10x
log e if 10 ≤ x < 100.

SinceX is Benford,�X = 0 and indeed�αX = 0 for allα > 0. By contrast, if, for instance,Xσ
is log-normal with parameters (0, σ 2) then Xσ is not Benford. Still, it can be proved that

0 < �Xσ <
1
3 e−2π2σ 2(log e)2 for all σ ≥ 1,

which shows �Xσ to be quite small even for moderate σ .
The aim of this paper is to substantiate the reservations expressed earlier through sharp

quantitative results that extend and complement [2]. Specifically, in Section 3 we show that
for many familiar ensembles of random variables, including all uniform, exponential, and
normal X, the quantity �X is bounded below by a positive constant, no matter how large the
‘spread’ of X. In Sections 4 and 5 we then focus on the case of uniform X. In our main
result, Theorem 5.1 below, we explicitly identify the largest δ > 0 such that �X ≥ δ for every
uniform X.

2. Probabilistic preliminaries

All random variables in this paper are understood to be real-valued. Given a random
variable X, denote by FS(X) the distribution function of S(X) on S, i.e.

FS(X)(s) = P{S(X) ≤ s} for all s ∈ S.

For any two random variables X, Y , let

δX,Y (s) = FS(X)(s)− FS(Y )(s) for all s ∈ S,

as well as δ−X,Y := − infs∈SδX,Y (s), δ
+
X,Y := sups∈SδX,Y (s), and also

�X,Y := sup
s∈S

|δX,Y (s)| = max{δ−X,Y , δ+X,Y }, �X,Y := δ−X,Y + δ+X,Y .

Note that the function δX,Y is right-continuous with left limits (càdlàg); hence, δX,Y (s−) :=
limε↓0 δX,Y (s − ε) exists for all 1 < s ≤ 10, and δX,Y (10−) = 0. Clearly, δ−X,Y , δ

+
X,Y are

nonnegative, and 0 ≤ �X,Y ≤ �X,Y ≤ 1. The quantity �X,Y , in particular, is useful for the
purpose of this paper since, as the following elementary observations show, it controls how
much �X,Y may vary under scaling.
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On the significands of uniform random variables 355

Lemma 2.1. Let X, Y be random variables. Then, for every α > 0,

(i) �αX,αY ≤ �X,Y + |P{X = 0} − P{Y = 0}|;
(ii) �αX,αY ≥ 1

2�X,Y − 1
2 |P{X = 0} − P{Y = 0}|.

Proof. Since S(10x) = S(x) for all x ∈ R, and both assertions are clearly correct for α = 1,
we can assume that 1 < α < 10. Also, let c = P{X = 0}−P{Y = 0} for convenience. Observe
that

FS(αX)(s) =

⎧⎪⎪⎨⎪⎪⎩
P{X = 0} + FS(X)

(
10s

α

)
− FS(X)

(
10

α
−

)
if 1 ≤ s < α,

1 + FS(X)

(
s

α

)
− FS(X)

(
10

α
−

)
if α ≤ s < 10.

(2.1)

Therefore, for every 1 ≤ s < α,

δαX,αY (s) = c + δX,Y

(
10s

α

)
− δX,Y

(
10

α
−

)
. (2.2)

Since inf1<s≤10 δX,Y (s−) = −δ−X,Y and sup1<s≤10 δX,Y (s−) = δ+X,Y by the right-continuity of
δX,Y , (2.2) implies that

−|c| − δ−X,Y − δ+X,Y ≤ δαX,αY (s) ≤ |c| + δ−X,Y + δ+X,Y . (2.3)

Similarly, for every α ≤ s < 10,

δαX,αY (s) = δX,Y

(
s

α

)
− δX,Y

(
10

α
−

)
≤ δ+X,Y + δ−X,Y ,

but also δαX,αY (s) ≥ −δ−X,Y − δ+X,Y . Together with (2.3), this establishes (i).
To prove (ii), pick a sequence (s+n ) in S such that δX,Y (s+n ) → δ+X,Y ; assume without loss

of generality (w.l.o.g.) that (s+n ) is monotone and limn→∞ s+n = s+ for some 1 ≤ s+ ≤ 10.
Observe that if 1 < s+ < 10/α then α < αs+n < 10 for all sufficiently large n, and

δαX,αY (αs
+
n ) = δX,Y (s

+
n )− δX,Y

(
10

α
−

)
,

which, in turn, leads to

�αX,αY ≥ δ+X,Y − δX,Y

(
10

α
−

)
. (2.4)

Similarly, if 10/α < s+ < 10 then 1 < αs+n /10 < α for all sufficiently large n. In this case

δαX,αY

(
αs+n
10

)
= c + δX,Y (s

+
n )− δX,Y

(
10

α
−

)
and, hence,

�αX,αY ≥ c + δ+X,Y − δX,Y

(
10

α
−

)
. (2.5)

In a completely similar way, the remaining cases s+ = 1, s+ = 10/α, and s+ = 10 all yield
either (2.4) or (2.5).
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356 A. BERGER AND I. TWELVES

Next pick a monotone sequence (s−n ) in S with δX,Y (s−n ) →−δ−X,Y , and let s− = limn→∞ s−n .
If, for instance, 1 < s− < 10/α then

δαX,αY (αs
−
n ) = δX,Y (s

−
n )− δX,Y

(
10

α
−

)
for all sufficiently large n,

which, in turn, implies that

�αX,αY ≥ δ−X,Y + δX,Y

(
10

α
−

)
. (2.6)

Completely analogous arguments show that every other possible value of s− either leads to
(2.6) as well, or else yields

�αX,αY ≥ −c + δ−X,Y + δX,Y

(
10

α
−

)
. (2.7)

Adding (2.4) or (2.5) to (2.6) or (2.7) shows that 2�αX,αY ≥ δ−X,Y + δ+X,Y − |c|. �

The following examples illustrate Lemma 2.1. In particular, they show that neither inequality
can be improved in general without further assumptions on X and Y .

Example 2.1. (i) Let X and Y be uniform random variables on [0, 1] and [0, 3], respectively.
Then FS(X)(s) = 1

9 (s − 1) for all s ∈ S, and

FS(Y )(s) =
{

10
27 (s − 1) if 1 ≤ s < 3,
1
27 (s + 17) if 3 ≤ s < 10,

hence, δ+X,Y = 0 and δ−X,Y = −δX,Y (3) = 14
27 = �X,Y = �X,Y , showing that equality may hold

in Lemma 2.1(i) for some α > 0. A short calculation confirms that �αX,αY = �X,Y precisely
if, for some integer k, either α = 10k or α = 1

3 × 10k .
On the other hand,

FS(5X)(s) =
{

2
9 (s − 1) if 1 ≤ s < 5,
1
45 (s + 35) if 5 ≤ s < 10,

FS(5Y )(s) =
{

20
27 (s − 1) if 1 ≤ s < 3

2 ,
1
27 (2s + 7) if 3

2 ≤ s < 10,

from which it is clear that�5X,5Y = −δ5X,5Y (
3
2 ) = δ5X,5Y (5) = 7

27 = 1
2�X,Y , and so equality

may hold in Lemma 2.1(ii) also. Again, it is readily confirmed that �αX,αY = 1
2�X,Y if and

only if, for some integer k, either α = 1
2 × 10k or α = 2

13 × 10k .

(ii) Assume that P{X = 0} = 1
2 ,P{X = 1} = P{X = 2} = 1

4 , and let Y be Benford. Then
δ−X,Y = 0, δ+X,Y = 3

4 = �X,Y , and Lemma 2.1 yields 1
8 ≤ �αX,αY ≤ 5

4 for all α > 0. Since
FS(αX)(1) ≥ 1

2 , clearly �αX,αY ≥ 1
4 . On the other hand, �αX,αY ≤ 1. In this example,

infα>0�αX,αY >
1
2�X,Y − 1

2 |P{X = 0} − P{Y = 0}| as well as supα>0�αX,αY < �X,Y +
|P{X = 0} − P{Y = 0}|.
(iii) If X = 1 and Y = 2 with probability 1 then δ−X,Y = 0, δ+X,Y = 1 = �X,Y , and �αX,αY =
1 > 1

2 for all α > 0. Therefore, infα>0�αX,αY may be larger than 1
2�X,Y even when

P{X = 0} = P{Y = 0} = 0.
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On the significands of uniform random variables 357

(iv) To see that, unlike in (ii), Lemma 2.1(i) may yield an equality for some α > 0 even when
P{X = 0} 	= P{Y = 0}, let P{X = 0} = 2

3 ,P{X = 1} = 1
9 , and P{X = 2} = 2

9 , as well as,
with some 0 < ε < 1

9 ,

P{Y = 0} = 1
3 , P{Y = 1} = 4

9 , P{Y = 2} = 2
9 (1 − 9ε), P{Y = 3} = 2ε.

Then δ−X,Y = 0 and δ+X,Y = 2ε = �X,Y = �X,Y . Note that P{S(5X) = 1} = 2
9 and

P{S(5X) = 5} = 1
9 , whereas

P{S(5Y ) = 1} = 2
9 (1 − 9ε), P{S(5Y ) = 1.5} = 2ε, P{S(5Y ) = 5} = 4

9 .

With this, �5X,5Y = 2ε + 1
3 = �X,Y + |P{X = 0} − P{Y = 0}|.

(v) With the same X and Y as in (iv), let X̃ = 5X and Ỹ = 5Y . Then δ−
X̃,Ỹ

= 0 and
δ+
X̃,Ỹ

= 2ε + 1
3 = �X̃,Ỹ . Since S(2X̃) = S(X) and S(2Ỹ ) = S(Y ),

�2X̃,2Ỹ − ( 1
2�X̃,Ỹ − 1

2 |P{X̃ = 0} − P{Ỹ = 0}|) = �X,Y − ε = ε.

From this we see that the difference between the two sides of the inequality in Lemma 2.1(ii)
may be arbitrarily small for some α > 0 even when P{X = 0} 	= P{Y = 0}.
(vi) Assume that the distribution functions of X and Y are

FX(s) =
{

1
2 s if 1 ≤ s < 2,

1 if 2 ≤ s < 10,
FY (s) =

{
0 if 1 ≤ s < 5,
1

10 s if 5 ≤ s < 10,

so that δ−X,Y = 0 and δ+X,Y = 1 = �X,Y . Utilizing (2.1), it is readily confirmed that

�αX,αY =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

α
if 1 ≤ α < 2,

1 if 2 ≤ α < 5,
5

α
if 5 ≤ α < 10.

In this example, infα>0�αX,αY = 1
2 = 1

2�X,Y , but �αX,αY > 1
2 for all α. Note that P{X =

0} = P{Y = 0} = 0, and X and Y both only have a single atom.

As seen Example 2.1(iii), infα>0�αX,αY may be larger than the bound in Lemma 2.1(ii)
even when P{X = 0} = P{Y = 0} = 0. When equality does occur, it may be the case
that �αX,αY > 1

2�X,Y for all α > 0, i.e. the infimum may not be attained, as demonstrated
by Example 2.1(vi). Similarly, supα>0�αX,αY may be smaller than the bound provided by
Lemma 2.1(i), though it is easily checked that supα>0�αX,αY = �X,Y whenever P{X = 0} =
P{Y = 0}. Examples in the spirit of Example 2.1(vi) show that even under the latter assumption
the supremum may not be attained. Not surprisingly, mild additional assumptions on X and Y
rule out these situations altogether.

Lemma 2.2. LetX and Y be random variables. If P{X = 0} = 0 and Y is continuous, or vice
versa, then minα>0�αX,αY = 1

2�X,Y and maxα>0�αX,αY = �X,Y .

Proof. Since �X,Y = �Y,X and �X,Y = �Y,X, assume w.l.o.g. that P{X = 0} = 0 and Y
is continuous. Observe first that the function δX,Y has the following property. If a < b but
δX,Y (a) > δX,Y (b) for some a, b ∈ S, then, for every δ with δX,Y (b) < δ < δX,Y (a), there
exists a continuity point c of δX,Y with a < c < b such that δX,Y (c) = δ.
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358 A. BERGER AND I. TWELVES

Pick s+ ∈ S with δX,Y (s+) = δ+X,Y , and a monotone sequence (s−n ) such that δX,Y (s−n ) →
−δ−X,Y . Note that δ+X,Y ≥ 1

2 (δ
+
X,Y − δ−X,Y ) ≥ −δ−X,Y , and both inequalities are strict, unless

δ−X,Y = δ+X,Y = 0; in the latter case, �X,Y = 0, and the assertions of the lemma trivially hold
since �αX,αY = 0 for all α > 0.

Assume first that δ+X,Y > δ−X,Y . In this case, δX,Y (s+) = δ+X,Y > 0, and since δX,Y (10−) = 0,
the property of δX,Y noted above yields a continuity point s∗ of δX,Y with s+ < s∗ < 10 and
δX,Y (s

∗) = 1
2 (δ

+
X,Y − δ−X,Y ). From (2.1), we deduce that

δ+10X/s∗, 10Y/s∗ = δ+X,Y − δX,Y (s
∗) = 1

2�X,Y . (2.8)

On the other hand, sn 	= s∗ for all sufficiently large n, and (2.1) yields

δ−10X/s∗, 10Y/s∗ = δ−X,Y + δX,Y (s
∗) = 1

2�X,Y ,

which, together with (2.8), leads to �10X/s∗, 10Y/s∗ = 1
2�X,Y .

Next assume that δ+X,Y < δ−X,Y . Since δX,Y (1) ≥ 0 and

−δ−X,Y = lim
n→∞ δX,Y (s

−
n ) <

1
2 (δ

+
X,Y − δ−X,Y ) < 0,

there exists a continuity point s∗ > 1 of δX,Y with δX,Y (s∗) = 1
2 (δ

+
X,Y − δ−X,Y ), and the

remaining argument is identical to the one for the δ+X,Y > δ−X,Y case considered earlier. Finally,
if δ+X,Y = δ−X,Y then clearly �X,Y = δ±X,Y = 1

2�X,Y . In all three cases, therefore, �αX,αY =
1
2�X,Y for some α > 0.

To prove that α 
→ �αX,αY also attains the maximal possible value �X,Y , let s− =
limn→∞ s−n . If s− = 1 or s− = 10 then δ−X,Y = 0 and, hence, �X,Y = �X,Y . If 1 < s− < 10
then either s− is a continuity point of δX,Y , and δX,Y (s−) = −δ−X,Y , or else δX,Y (s−−) = −δ−X,Y .
In the former case, from (2.1), we deduce that

δ+10X/s−, 10Y/s− = δ+X,Y − δX,Y (s
−) = �X,Y (2.9)

and, hence, �10X/s−, 10Y/s− ≥ �X,Y . In the latter case, δX,Y (s−) in (2.9) has to be replaced
by δX,Y (s−−), but this does not in any way alter the conclusion that �10X/s−, 10Y/s− ≥ �X,Y .
Thus, in either case, �αX,αY = �X,Y for some α > 0. �

Remark 2.1. (i) A close inspection of the above proof shows that, for P{X = 0} = 0 and
continuous Y , �αX,αY = 1

2�X,Y if and only if α = 10k/s for some k ∈ Z with 1 < s ≤ 10
satisfying δX,Y (s−) = 1

2 (δ
+
X,Y − δ−X,Y ). Similarly, �αX,αY = �X,Y if and only if, for some

k ∈ Z, α = 10k/s and either δX,Y (s−) = δ+X,Y or δX,Y (s−) = −δ−X,Y .

(ii) The functionα 
→ �αX,αY may be discontinuous even under the assumptions of Lemma 2.2.
For example, assume that P{X = 1} = P{X = 5} = 1

2 , and let Y be uniform on [5, 10]. Then

�αX,αY =

⎧⎪⎨⎪⎩
1

2

(
1 +

∣∣∣∣3 − 4

α

∣∣∣∣) if 1 ≤ α < 2,

1

2
if 2 ≤ α < 10,

and, hence, limα↑2�αX,αY = 1 whereas �2X,2Y = 1
2 . Clearly, however, α 
→ �αX,αY is

continuous whenever X and Y are both continuous.
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3. Deviations from Benford’s law

Note that if Y is Benford then FS(αY ) = FS(Y ) for all α > 0. This fact, a manifestation
of the scale-invariance of Benford’s law, is evident from (2.1); see also [3, Section 5.1]. To
simplify the notation, the dependence on Y is henceforth suppressed in all symbols δX,Y , δ

±
X,Y ,

�X,Y , and �X,Y whenever Y is Benford. Thus, for instance, �X,Y is written simply as �X in
this case; this notation is consistent with (1.3).

As outlined in the introduction, in this paper we quantify the conformance to Benford’s
law (or the lack thereof) of any random variable X by providing sharp bounds for �X, i.e.
the Kolmogorov distance between S(X) and S(Y ) for any Benford random variable Y . Aside
from its popularity and conceptual simplicity, usage of�X is also advantageous for theoretical
reasons. On the one hand, it is well known that the sup-norm metrizes the convergence in
distribution on the space of all continuous random variables (a complete and separable metric
space dense in the space of all S-valued variables). Thus, if one is interested primarily in
continuous random variables, then using the sup-norm yields the simplest compatible metric.
On the other hand, since every Benford random variable is (absolutely) continuous, it is clear that
even for a sequence of arbitrary random variables, �Xn → 0 is equivalent to (Xn) converging
in distribution to Benford’s law. For�X thus identified as an appropriate quantification for the
deviation of X from Benford’s law, Lemma 2.2 has an immediate corollary.

Proposition 3.1. Let X be a random variable. If P{X = 0} = 0 then minα>0�αX = 1
2�X

and maxα>0�αX = �X.

Recall that many widely used families of random variables are closed under dilations (i.e.
scalings) and translations. For example, if X is uniform on [a, b] then X = a + (b − a)U0,1,
where U0,1 is uniform on [0, 1]. Similarly, if X is normal with mean μ and variance σ 2 then
X = μ + σN , where N is standard normal. The following lemma is a simple observation
regarding �X for such families.

Lemma 3.1. For every random variable X, the following are equivalent:

(i) infa,b∈R�aX+b = 0;

(ii) X + x is Benford for some x ∈ R.

Proof. To prove (i) �⇒ (ii), assume that for every x ∈ R, the random variable X+ x is not
Benford. As the following argument shows, this forces infa,b∈R�aX+b > 0.

Clearly, if a = 0 then�aX+b = �b ≥ 1
2 . Henceforth, assume that a 	= 0. IfX has an atom,

of weight p, say, then �aX+b ≥ 1
2p > 0 for all a, b. Thus, it is enough to consider the case of

continuous X where, with Proposition 3.1,

�aX+b ≥ 1
2�X+b/a ≥ 1

2 inf
x∈R

�X+x.

Given any 0 < ε < 1
2 , pick ξ > 0 so large that P{2|X| ≤ εξ} ≥ 1 − ε, and note that whenever

|x| ≥ ξ ,

�X+x = �|x|Xε/(1+ε) ≥ 1
2�Xε ≥ 1

2�Xε,

where Xε = (1 + ε)(X + x)/|x|. Since

P{S(Xε) ≤ 1 + 2ε} ≥ P{(1 + ε)|X| ≤ ε|x|} ≥ P{2|X| ≤ ε|x|} ≥ 1 − ε,
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360 A. BERGER AND I. TWELVES

it follows that �Xε ≥ 1 − ε − log(1 + 2ε) > 1 − 2ε, and, hence, �X+x ≥ 1
2 − ε > 0.

Note that the function x 
→ �X+x is continuous (by dominated convergence) and positive (by
assumption). Thus, infa,b∈R�aX+b > 0, as claimed.

The reverse implication (ii) �⇒ (i) is obvious. �
Remark 3.1. The authors conjecture that ifX+x1 andX+x2 are both Benford then x1 = x2.
If indeed this is correct then (i) and (ii) in Lemma 3.1 are equivalent to:

(iii) X + x is Benford for a unique x ∈ R.

If the random variableX is uniform thenX+x is not Benford for any x ∈ R, simply because
FS(X+x) is piecewise linear. Similar arguments apply in the case of exponential or normal X
and, hence, Lemma 3.1 has the following corollary.

Proposition 3.2. Let X be a random variable. If X is uniform, exponential, or normal, then
infa,b∈R�aX+b > 0.

Remark 3.2. If a family X does not consist entirely of scaled and translated copies of a single
random variable, then infX∈X�X may well be 0. For example, for every α > 0, let Xα be
α-Pareto, i.e. P{Xα > x} = x−α for all x ≥ 1. Then

�Xα = α

8 log e
+ O(α2) as α ↓ 0

and, consequently, infα>0�Xα = 0; see also [3, Theorem 3.11].

Note that Proposition 3.2 guarantees, for all uniform, exponential, and normal random
variables X, the existence of a positive lower bound on the distance of S(X) from any Benford
random variable, regardless of the spread of X. In the remainder of this paper we explicitly
determine the value of infa,b∈R�aX+b for uniform X. A similar analysis for exponential or
normal X may be the subject of future work.

Remark 3.3. While throughout this paper α is simply a (nonrandom) positive number, an
intriguing, open-ended question raised by one referee allows α in �αX to be random as well:
if A and X are independent, how is �AX related to �A and �X? To the best of the authors’
knowledge, this question has so far been addressed in special cases only. While it is easy to see
that�AX = 0 if�A�X = 0, the converse is not true in general. It is true, however, if A andX
have the same distribution, in fact�X1···Xn > 0 for any independent and identically distributed
random variables X1, . . . , Xn with �X1 > 0, and a mild assumption on X1 then guarantees
that limn→∞�X1···Xn = 0; see [3, Section 8.2] for details.

4. A general minimization problem

By providing context and introducing some convenient notation, the considerations of this
section are primarily setting the stage for the results presented in the next section. They may,
however, also be of independent interest.

For convenience, denote by R the (open) rectangle (1, 10)×(0, 1) and, for every (σ, τ ) ∈ R,
let Xσ,τ be a random variable with

P{Xσ,τ ≤ s} =

⎧⎪⎨⎪⎩
τ

σ − 1
(s − 1) if 1 ≤ s < σ,

1 + 1 − τ

10 − σ
(s − 10) if σ ≤ s < 10.

(4.1)
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Thus, the distribution function of Xσ,τ is piecewise linear, its graph consisting of the two line
segments joining the three points (1, 0), (σ, τ ), and (10, 1). As seen in Example 2.1(i) and, in
more detail, in Section 5 below, for some uniform random variables X and the appropriate σ
and τ , the distributions of S(X) and Xσ,τ coincide. Since, however, not every variable Xσ,τ
arises that way, the goal of this section is to study more generally the function � : R → [0, 1]
with �(σ, τ) = �Xσ,τ , and, in particular, to determine its minimal value. For this, it is
convenient to utilize � : R

+ → R given by

�(x) = x − log x − log e + log log e.

Note that � is smooth, nonnegative, convex, and �(log e) = � ′(log e) = 0. For later use, it
also is convenient to introduce two nonnegative, monotone C1-functions �−, �+ : R

+ → R,

�−(x) = �(min{x, log e}), �+(x) = �(max{x, log e}),
for which � = �− +�+ = max{�−, �+}.

Observe first that δXσ,τ is continuous and piecewise smooth with

δ′Xσ,τ (s) =

⎧⎪⎨⎪⎩
τ

σ − 1
− log e

s
if 1 ≤ s < σ,

1 − τ

10 − σ
− log e

s
if σ < s < 10.

Since δXσ,τ (1) = δXσ,τ (10−) = 0 and δ′′Xσ,τ (s) > 0 for s 	= σ , the function δXσ,τ attains its
maximal value either at s = 1, where δXσ,τ (1) = 0, or at s = σ , where δXσ,τ (σ ) = τ − log σ ;
thus,

δ+Xσ,τ = max{0, τ − log σ }. (4.2)

On the other hand, δXσ,τ has a local minimum at s−1 = (σ−1) log e/τ , provided that 1 ≤ s−1 < σ ,
or, equivalently, τ ≤ (σ − 1) log e < στ , and in this case

−δXσ,τ (s−1 ) = �

(
τ

σ − 1

)
= log σ − τ +�

(
στ

σ − 1

)
. (4.3)

Similarly, δXσ,τ has a local minimum at s−2 = (10 −σ) log e/(1− τ), provided that σ(1− τ) <
(10 − σ) log e < 10(1 − τ), in which case

−δXσ,τ (s−2 ) = �

(
10

1 − τ

10 − σ

)
= log σ − τ +�

(
σ

1 − τ

10 − σ

)
. (4.4)

Combining (4.2)–(4.4), it is readily confirmed that

�(σ, τ) =

⎧⎪⎪⎨⎪⎪⎩
log σ − τ + max

{
�−

(
σ

1 − τ

10 − σ

)
, �+

(
στ

σ − 1

)}
if 0 < τ < log σ,

τ − log σ + max

{
�−

(
τ

σ − 1

)
, �+

(
10

1 − τ

10 − σ

)}
if log σ ≤ τ < 1.

Note that the function � has a nontrivial symmetry; namely, � ◦ h = � with

h(σ, τ ) =
(

10

σ
, 1 − τ

)
for all (σ, τ ) ∈ R.
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�10� 101 σ
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R

R

Figure 1: The diffeomorphism h of R = (1, 10)× (0, 1) maps regions of like shading onto one another
and leaves the curves C± invariant. On R, the function� attains its minimal value at (σ, τ ) = (

√
10, 1

2 ),
the unique fixed point of h; see Proposition 4.1. Values of (σ, τ ) for which Xσ,τ = S(Uc,1) with some
−1 ≤ c < 1 correspond to curves Ck and are shown as dashed lines (if c > 0 and, hence, k > 0) and

solid (if c < 0 and, hence, k < 0), respectively; see Section 5 for details.

The diffeomorphism h of R is involutory, i.e. h ◦ h = idR, where ‘id’ is the identity function,
and has a unique fixed point (

√
10, 1

2 ). Moreover, h admits many smooth invariant curves
intersecting at that fixed point, two of which are relevant for what follows. One curve is simply
given by C+ = {(σ, log σ) : 1 < σ < 10}. A second, less obvious h-invariant curve is

C− =
{(

γ (x)

γ (10x)
, γ (x)− γ (10x)

)
: x ∈ R

+
}
, (4.5)

where γ : R
+ → R

+ is the smooth decreasing (and convex) function

γ (x) =
⎧⎨⎩

log x

x − 1
if x 	= 1,

log e if x = 1.

As a consequence, h maps the regions of like shading shown in Figure 1 onto one another in a
one-to-one manner.

To identify the minimal value of the function�, first observe that the latter has a continuous
extension to the compact rectangle R = [1, 10] × [0, 1], henceforth denoted also by�, and so
a (global) minimum exists. Specifically,

�(σ, 0) = �

(
10

σ
, 1

)
= log σ +�−

(
σ

10 − σ

)
for all σ ∈ [1, 10],
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as well as

�(1, τ ) = �(10, 1 − τ) = τ +�+
(

10
1 − τ

9

)
for all τ ∈ [0, 1];

here, �−(∞) := �+(0) := 0. In particular, �(σ, τ) ≥ �( 1
9 ) for all (σ, τ ) ∈ ∂R. In fact,

�(σ, τ) > �

(
1

9

)
whenever τ <

σ − 1

9
or τ > 10

σ − 1

9σ
, (4.6)

i.e. whenever (σ, τ ) lies in the part of R shaded light in Figure 1.
Next note that due to symmetry, it is enough to consider the part of R below C+. Thus,

assume that τ ≤ log σ , and observe that if στ ≤ (σ − 1) log e then

�(σ, τ) =
⎧⎨⎩�

(
10

1 − τ

10 − σ

)
if σ(1 − τ) < (10 − σ) log e,

log σ − τ if σ(1 − τ) ≥ (10 − σ) log e.

Similarly, if σ(1 − τ) ≥ (10 − σ) log e then

�(σ, τ) =
⎧⎨⎩log σ − τ if στ < (σ − 1) log e,

�

(
τ

σ − 1

)
if στ ≥ (σ − 1) log e.

From these equations and the properties of �, it is clear that on the compact set

{(σ, τ ) ∈ R : στ ≤ (σ − 1) log e} ∪ {(σ, τ ) ∈ R : σ(1 − τ) ≥ (10 − σ) log e},
i.e. on the union of the unshaded and the light shaded regions below C+ in Figure 1, the
function � attains its minimal value on the boundary. A global minimum of �, therefore, can
be found in

R0 := {(σ, τ ) ∈ R : τ ≤ log σ, στ ≥ (σ − 1) log e, σ (1 − τ) ≤ (10 − σ) log e},
i.e. in the union of the dark shaded and hatched regions below C+ in Figure 1. For (σ, τ ) ∈ R0,

�(σ, τ) = max

{
�

(
τ

σ − 1

)
, �

(
10

1 − τ

10 − σ

)}
,

and if �(σ, τ) is minimal then necessarily

�

(
τ

σ − 1

)
= �

(
10

1 − τ

10 − σ

)
.

The latter is readily seen to be equivalent to (σ, τ ) ∈ C−. In other words, on R0, and, hence, on
all of R as well, � attains its global minimal value on R0 ∩ C−. Utilizing the parametrization
(4.5) of C−, note that

�

(
γ (x)

γ (10x)
, γ (x)− γ (10x)

)
= � ◦ γ (10x) for all x ∈ [1/√10, 1]. (4.7)

Since x 
→ � ◦ γ (10x) is increasing on [ 1
10 ,+∞), the minimal value in (4.7) is attained

precisely at x = 1/
√

10. With γ (
√

10) = 1
18 (

√
10 + 1), therefore, the preceding analysis

identifies the minimal value of � on R. (Here and throughout, real numbers are displayed to
four correct significant decimal digits.)
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Proposition 4.1. Let the random variable Xσ,τ be given by (4.1). Then

�Xσ,τ ≥ �
( 1

18 (
√

10 + 1)
) = 0.070 66, (4.8)

and (4.8) is strict unless (σ, τ ) = (
√

10, 1
2 ).

5. Sharp bounds for uniform random variables

In this concluding section we identify a sharp universal lower bound for �X, where the
random variable X = Ua,b is uniform on [a, b] with a < b. To this end, we first determine
the value of �X. In view of Proposition 3.1, and replacing X by −X if necessary (recall that
S(−x) = S(x) for all x ∈ R), we can assume that |a| ≤ 1 and b = 1. Throughout, therefore,
let X = Uc,1 with −1 ≤ c < 1.

Note first that if c = −1 or c = 0 then simply

FS(X)(s) =
∑
k<0

P{U0,1 ∈ [10k, 10ks]} =
∑
k<0

10k(s − 1) = s − 1

9
for all s ∈ S.

Thus, with the random variable Xσ,τ and the function � introduced in the previous section,
clearly S(U−1,1) and S(U0,1) have the same distribution as Xσ,(σ−1)/9 for any 1 < σ < 10,
and

�U−1,1 = �U0,1 = �

(
σ,
σ − 1

9

)
= �

(
1

9

)
.

Next, for 0 < |c| < 1, a short calculation yields

FS(Uc,1)(s) =

⎧⎪⎪⎨⎪⎪⎩
S(c)− 10c

9S(c)(1 − c)
(s − 1) if 1 ≤ s < S(c),

1 + S(c)− c

9S(c)(1 − c)
(s − 10) if S(c) ≤ s < 10.

In this case, therefore, S(Uc,1) has the same distribution as Xσ,τ with

σ = S(c), τ = S(c)− 10c

9S(c)

S(c)− 1

1 − c
. (5.1)

To write (5.1) in a form more convenient for the purpose of this section, denote by �x� the
largest integer not larger than x ∈ R; also let sign(x) equal 1, 0, or −1 depending on whether
x > 0, x = 0, or x < 0, respectively. For every k ∈ Z, define fk : S → [0, 1] as

fk(s) = 10|k| − 10 sign(k)

10|k| − s sign(k)

s − 1

9
= s − 1

9
− sign(k)

10|k| − s sign(k)

(10 − s)(s − 1)

9
.

Note that fk(s) → 1
9 (s − 1) = f0(s) uniformly on S as |k| → ∞. Utilizing the functions fk ,

the value of the parameter τ in (5.1) can be expressed neatly as τ = fk(c) ◦ S(c), where
k(c) = −�log |c|� sign(c), and, consequently,

�Uc,1 = �(S(c), fk(c) ◦ S(c)) for all c ∈ [−1, 1) \ {0}.
Thus, to minimize the value of�Uc,1 for −1 ≤ c < 1, the function� only has to be considered
along the (countable) family of curves Ck , k ∈ Z, where Ck = {(σ, fk(σ )) : 1 < σ < 10}.
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Figure 2: Plots of �Uc,1 for −1 < c < 0 (solid) and 0 < c < 1 (dashed), respectively. Together with
Proposition 3.1, this graph illustrates why �X ≥ 1

2�(
2
9 log 11

2 ) for every uniform random variable X
(Theorem 5.1), whereas, in fact, �X ≥ 1

2�(
1
9 ) whenever X is nonnegative (or nonpositive) with

probability 1 (Theorem 5.2).

A few of these curves are displayed in Figure 1 as dashed curves (for k > 0) and solid curves
(for k < 0). Note that every curve Ck lies below C+; if k > 0 then Ck even lies below C0,
the latter simply being one diagonal of the rectangle R. From (4.6), recall that � ≥ �( 1

9 )

below that diagonal, and so�Uc,1 ≥ �( 1
9 ) whenever 0 ≤ c < 1. On the other hand, to find the

minimal value of � on Ck for k < 0, note that

�(σ, fk(σ )) = max

{
�

(
1

9

10|k| + 1

10|k| + σ

)
, �

(
10

9

10|k| + 10

10|k| + σ

)}
for all σ ∈ [1, 10]. (5.2)

From the properties of �, it is evident that the minimal value in (5.2) is attained exactly when
the two expressions on the right-hand side are equal. As seen in Section 4, this means that
(σ, fk(σ )) ∈ C−. In other words, for every k < 0, the function � attains its minimal value
on Ck at the one-point intersection

Ck ∩ C− =
{(

γ (xk)

γ (10xk)
, γ (xk)− γ (10xk)

)}
with xk = 10|k| + 1

10|k| + 10
.

From this and (4.7), it follows that

min
σ∈[1,10]�(σ, fk(σ )) = � ◦ γ (10xk) for all k < 0. (5.3)

Since x−1 = 11
20 < x−2 < · · · < 1, and x 
→ � ◦ γ (10x) is increasing on [ 1

10 ,+∞), clearly
the minimal value appears on the right-hand side of (5.3) for k = −1, i.e.

min−1≤c<0
�Uc,1 = min

k<0,σ∈[1,10]�(σ, fk(σ )) = � ◦ γ (10x−1); (5.4)

see also Figure 2. In essence, this observation establishes the following main result.

Theorem 5.1. Let X be a uniform random variable. Then

�X ≥ 1
2�

( 2
9 log 11

2

) = 0.075 89, (5.5)
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and (5.5) is strict unless X or −X is uniform on 10k�[−1 + log 11
2 , log 11

2 ], where k ∈ Z, and
� > 0 satisfies min{�( 20

9 �
−1),�( 11

9 �
−1)} = 1

2�(
2
9 log 11

2 ).

Proof. For convenience, let ψ = � ◦ γ (10x−1) = �( 2
9 log 11

2 ). Thus, �Uc,1 ≥ ψ for all
−1 ≤ c < 1, by (5.4), and equality holds if and only if k(c) = −1 and

S(c) = γ (x−1)

γ (10x−1)
= 10

log(11/2)
− 10,

i.e. precisely if c = 1 − 1/log(11/2). In this case, note that

δUc,1(s) = min
{
�

(
s 2

9 log 11
2

)
, �

(
s 11

90 log 11
2

)} − ψ for all s ∈ S;
hence, δ+Uc,1 = 0 and δ−Uc,1 = ψ = �Uc,1 .

Let X be uniform on [a, b] with a < b, and replacing X by −X if necessary, assume
that |a| ≤ b. Then X = bUa/b,1, and Proposition 3.1 yields �X ≥ 1

2�Ua/b,1 ≥ 1
2ψ , which

proves (5.5). Furthermore, by Remark 2.1(i), �X = 1
2ψ if and only if a/b = c and

b = 10k/s, where k ∈ Z and 1 < s ≤ 10 satisfies δUc,1(s) = 1
2 (δ

+
Uc,1

− δ−Uc,1) = − 1
2ψ ,

i.e. min{�(s 2
9 log 11

2 ),�(s
11
20 log 11

2 )} = 1
2ψ . With �−1 := 1

10 s log 11
2 > 0, therefore,

b = 10k

s
= 10k−1� log

11

2
, a = bc = 10k−1�

(
log

11

2
− 1

)
,

and min{�( 20
9 �

−1),�( 11
9 �

−1)} = 1
2ψ , proving that [a, b] has the form asserted in the theorem.

This completes the proof. �
Assuming thatX is nonnegative (or nonpositive) nearly doubles the lower bound in (5.5), as

we demonstrate in the following theorem; see also Figure 2. The result is a (slightly improved)
version of [3, Theorem 3.13], with 10−∞ := 0 for convenience.

Theorem 5.2. Let X be a uniform random variable. If X ≥ 0 (or X ≤ 0) with probability 1
then

�X ≥ 1
2�

( 1
9

) = 0.1344, (5.6)

and (5.6) is strict unless X (or −X) is uniform on 10k� [10−n, 1], where k ∈ Z, n ∈ N ∪ {∞},
and � > 0 satisfies �( 1

9�
−1) = 1

2�(
1
9 ).

Proof. From (4.6), recall that�(σ, τ) ≥ �( 1
9 ) for τ ≤ 1

9 (σ − 1), and the former inequality
is strict whenever the latter is strict. It follows that �Uc,1 ≥ �( 1

9 ) for all 0 ≤ c < 1, with
equality holding if and only if either c = 0 or else S(c) = 1, i.e. c = 10−n for some n ∈ N.
In summary, therefore,�Uc,1 = �( 1

9 ) precisely if c = 10−n for some n ∈ N ∪ {∞}. Note that,
for any such c,

δUc,1(s) = 1
9 (s − 1)− log s = �

( 1
9 s

) −�
( 1

9

)
for all s ∈ S;

hence, δ+Uc,1 = 0 and δ−Uc,1 = �( 1
9 ) = �Uc,1 .

Let X be uniform on [a, b], and w.l.o.g. assume that 0 ≤ a < b. Again, X = bUa/b,1,
and �X ≥ 1

2�Ua/b,1 ≥ 1
2�(

1
9 ), which proves (5.6). Furthermore, equality holds if and only if

a/b = 10−n and b = 10k/s, where k ∈ Z and 1 < s ≤ 10 satisfies δUc,1(s) = 1
2 (δ

+
Uc,1

−δ−Uc,1) =
− 1

2�(
1
9 ). With � := s−1 > 0, therefore, b = 10k�, a = 10k−n�, and �( 1

9�
−1) = 1

2�(
1
9 ).

This completes the proof. �
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Remark 5.1. In Theorem 5.1, the two solutions of min{�( 20
9 �

−1),�( 11
9 �

−1)} = 1
2�(log 11

2 ),
determined numerically, are � = 1.642 and � = 9.856. Thus, equality holds in (5.5) precisely
if, for some k ∈ Z, the random variable 10kX or −10kX is uniform on either [−0.4263, 1.215]
or [−2.558, 7.297]. In Theorem 5.2, the two solutions of �( 1

9�
−1) = 1

2�(
1
9 ) are � = 0.1275

and � = 0.6324.
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