
DISCRETE AND CONTINUOUS Website: http://aimSciences.org
DYNAMICAL SYSTEMS SERIES S
Volume 1, Number 1, March 2008 pp. 15–25

COUNTING UNIFORMLY ATTRACTING SOLUTIONS OF

NONAUTONOMOUS DIFFERENTIAL EQUATIONS

Arno Berger

Department of Mathematics and Statistics
University of Canterbury

Christchurch, New Zealand

Abstract. Bounded uniform attractors and repellors are the natural nonau-
tonomous analogues of autonomous stable and unstable equilibria. Unlike for
equilibria, it is generally a difficult dynamical task to determine the number of
uniformly attracting or repelling solutions for a given nonautonomous equation,
even if the latter exhibits strong structural properties such as e.g. polynomial
growth in space or periodicity in time. The present note highlights this aspect
by proving that the number of uniform attractors is locally finite for several
classes of equations, and by providing examples for which this number can be
any N ∈ N. These results and examples extend and complement recent work
on nonautonomous differential equations.

1. Introduction. Stability and bifurcation theory of finite-dimensional ordinary
differential equations

ẋ = F (x; λ) , (1)

depending on a parameter λ, is a highly developed and to a large extent classical
subject [1, 5, 6]. For the nonautonomous analogue of (1),

ẋ = f(t, x; λ) , (2)

stability and especially bifurcations are by far less well understood; they are the
subject of intense research [3, 4, 7–11, 15, 16]. Besides the enormous dynamical
variety brought about by an explicit time-dependence, one patent difficulty inherent
to (2) is that it is not at all obvious the bifurcations of which objects one should
study. While classical bifurcation theory for (1) describes the change of stability as
well as the creation and annihilation of equilibria, periodic and homoclinic orbits
etc., equilibria and periodic orbits for instance are not generic for (2) if f depends
aperiodically on t. To deal with these difficulties, uniformity in t ∈ R of some sort
or another is typically assumed, or the transition of attractors is studied from a
qualitative point of view only [11]. Stronger results are available for special cases,
e.g., if some solutions can be computed explicitly [9, 10].

To bring forward internal attractor bifurcation analysis, bounded uniform attrac-

tors and repellors have been introduced in [2]. A bounded uniform attractor of

ẋ = f(t, x) (3)
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is, by definition, a bounded solution which attracts all neighbouring solutions uni-
formly in t ∈ R. Clearly, every uniform attractor is both forward and pull-back
attracting, but in general the converse does not hold even in the simplest nonau-
tonomous situations. Rather, uniform attraction is a significantly stronger property,
and the results in [2] suggest that uniformly attracting solutions of (2) may be cru-
cial for understanding local aspects of nonautonomous bifurcations. The purpose
of this note is to complement these results by addressing the difficult question of
determining the possible number of uniform attractors for a given class of equations
and to provide several instructive examples; as in [2], the focus is on equations (3)
which, albeit nonautonomous, exhibit some additional structure such as asymptotic
autonomy, polynomial growth in x or periodicity in t.

2. Uniform attractors and repellors. This note studies differential equations
(3) where f : R

2 → R as well as ∂
∂xf are continuous in (t, x); in addition it will

be assumed throughout that supR×K |f | < ∞ for every compact set K ⊂ R, i.e.,
f(t, ·) is uniformly bounded in t on every compact subset of R. Given (t0, x0) ∈ R

2

the initial value problem consisting of (3) together with x(t0) = x0 has a unique
solution t 7→ ϕ(t; t0, x0) defined on some (possibly bounded) maximal open interval
containing t0. The following definition reflects the fact that a bounded solution of
(3) can attract neighbouring solutions in different ways; for the sake of brevity the
term attractor will be used instead of the accurate yet clumsy attracting solution.

Definition 1. Let µ : R → R be a bounded solution of (3) and (x0,σ)σ∈R a family
of real numbers. Then µ is called

(i) a forward attractor if there exists δ > 0 such that, for every t0 ∈ R,

|ϕ(t0 + τ ; t0, x0,t0) − µ(t0 + τ)| → 0 as τ → +∞ ,

whenever ‖x0,· − µ(·)‖∞ = supσ∈R
|x0,σ − µ(σ)| < δ;

(ii) a pullback attractor if there exists δ > 0 such that, for every t ∈ R,

|ϕ(t; σ, x0,σ) − µ(t)| → 0 as σ → −∞ ,

whenever ‖x0,· − µ(·)‖∞ < δ;
(iii) a uniform attractor if there exists δ > 0 such that

‖ϕ(· + τ ; ·, x0,·) − µ(· + τ)‖∞ → 0 as τ → +∞ ,

provided that ‖x0,· − µ(·)‖∞ < δ.

Moreover, µ is a uniform repellor if t 7→ µ(−t) is a uniform attractor with t

replaced by −t in (3). Also, µ is referred to as a global forward, pullback, uniform
attractor or uniform repellor if the respective property above holds for every δ > 0.

Example 2. Equation (3) may have infinitely many uniform attractors, as can be
seen for instance from

ẋ = − 1
2et(1 + et)−1x + x sin

(

πx2(1 + et)
)

, (4)

for which the functions µn and −µn, with µn defined as

µn : t 7→
√

n (1 + et)−1/2 (n ∈ N0) ,

are uniform attractors whenever n is odd. Note that the right-hand side of (4) is
real-analytic in x (and t) and that, for every compact set K ⊂ R, the stripe R×K

contains only finitely many uniform attractors even though all attractors are joined
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at +∞ in the sense that limt→+∞ |µn(t) − µm(t)| = 0 for all n, m. If, however, the
sine-function in (4) is replaced by the C∞-function

H(z) =

{

0 if z = 0 ,

−e−π|z|−1

sin(π2z−1) if z 6= 0 ,
(5)

then the functions µn and −µn, with µn given by

µn : t 7→ 1√
n
(1 + et)−1/2 (n ∈ N) ,

are uniform attractors for every odd n, and limn→+∞ µn(t) = 0 uniformly on R;
there are thus infinitely many uniform attractors contained in the stripe R × [0, 1].

In the autonomous case, that is for f(t, x) ≡ F (x) not depending on t, all three
notions of attraction coincide and every uniform attractor (repellor) µ is constant,
µ(t) ≡ µ0, with F (µ0) = 0 and (x − µ0)F (x) < 0 (> 0) whenever |x − µ0| > 0
is sufficiently small [2, Thm.9]. By analogy, and in view of Example 2, one might
conjecture that if f is real-analytic in x for each t then, for every compact set
K ⊂ R, only finitely many uniform attractors and repellors are entirely contained
in the stripe R × K. This, however, is not true in general, as evidenced by

Example 3. With H as in (5) and the parameter 0 ≤ κ ≤ 1
3 consider the equation

ẋ = xH
(

π(x2 + e−t2)
)

+ κxH
(

π(x2 + e−t2)
)2

=: fκ(t, x) , (6)

the right-hand side of which is real-analytic in x for each t. As will be explained
below, (6) exhibits a sequence (µn) of uniform attractors with µ1 > µ2 > . . . > 0
if κ is chosen appropriately. Since several of the subsequent steps require for their
justification elementary yet lengthy calculations, the argument will be outlined only
to such an extent that the interested reader can easily fill in the details.

First define, for every m ∈ N0, the set

Am =
{

(t, x) ∈ R
2 : m < (x2 + e−t2)−1 < m + 1

}

,

and observe that, for x > 0, fκ(t, x) is positive (negative) if and only if (t, x) ∈ Am

for some odd (even) m. Since fκ(t, 1) < 0 for all t, the solution ϕ(·; t0, x0) exists
for all t ≥ t0 if 0 ≤ x0 ≤ 1; similarly, if 0 ≤ x0 ≤ 1√

2
then ϕ(·; t0, x0) exists for

all t ≤ t0 provided that t0 ≤ −√
log 2. Thus with ρ = ϕ(0;−√

log 2, 1√
2
) > 0 the

solution ϕ(·; 0, x0) of (6) exists for all t whenever 0 ≤ x0 ≤ ρ.
Next observe that, locally uniformly in x,

fκ(t, x) → xH(πx2) + κxH(πx2)2 =: Fκ(x) as |t| → ∞ ,

and also ∂
∂xfκ(t, x) → F ′

κ(x). From this and a careful qualitative sketch of the sets
Am, it can be seen that, for every 0 < x0 ≤ ρ, the limit limt→±∞ ϕ(t; 0, x0) exists
and is in fact of the form 1√

m
for some m ∈ N. Here and throughout, usage of the

symbol ± indicates that the respective expression, equation, etc. is to be read twice,
once with the upper and once with the lower symbol(s) only. Let M± ∈ N be such
that limt→±∞ ϕ(t; 0, ρ) = 1√

M±
, and define

L±
m =

{

0 < ξ < ρ : limt→±∞ ϕ(t; 0, ξ) = 1√
m

}

(m ≥ M±) .

It is easy to see that all these sets are non-empty (possibly one-point) intervals.
Moreover, L+

m is open whenever m is odd. If ξ ∈ L+
m for some even m then

√

1√
m

− e−t2 < ϕ(t; 0, ξ) < 1√
m
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for all sufficiently large t. This together with the fact that ∂
∂xfκ

(

t, ϕ(t; 0, ξ)
)

> 0
for all large t shows that L+

m cannot have positive length and hence is a singleton.
Similarly, L−

m is a singleton or an open interval depending on whether m is odd or
even. Denoting the endpoints of L±

m by l±m, l±m−1 with l±m ≤ l±m−1 therefore

L±
m =

{

]l±m, l±m−1[ if m is odd
even ,

{l±m} = {l±m−1} if m is even
odd .

If x > 0 then κ 7→ fκ(t, x) is strictly increasing unless (t, x) belongs to the boundary
of some set Am. From this it follows that κ 7→ l+m(κ) is strictly decreasing for all
m ≥ M+ and, analogously, κ 7→ l−m(κ) is strictly increasing for all m ≥ M−.
Consequently, each set

Km =
{

κ ∈ [0, 1
3 ] : l−m(κ) = l+k (κ) for some k ≥ M+

}

(m ≥ M−) ,

is countable, and so is K =
⋃

m≥M− Km. Pick κ0 from [0, 1
3 ]\K. For each m ≥ M−

there exists an odd number km ≥ M+ such that l−m(κ0) ∈ L+
km

. Since the sequence

(km)m≥M+ is increasing and unbounded there exist odd numbers m1 < m2 < . . .

such that (kmn
)n∈N is strictly increasing. With these preparations define

µn : t 7→ ϕ
(

t; 0, l−mn
(κ0)

)

(n ∈ N) .

For each odd m ∈ N there exist positive numbers Tm, δm, cm such that

∂
∂xfκ(t, y) ≤ −cm ∀(t, y) : |t| ≥ Tm,

∣

∣y − 1√
m

∣

∣ < δm .

This together with the continuous dependence of ϕ(t; 0, ξ) upon ξ implies that µn

is a uniform attractor for all n ∈ N. Since ϕ(t; 0, ξ) > ϕ(t; 0, η) for all t whenever
ξ > η, it follows that µ1 > µ2 > . . . > 0, and also that ‖µn‖∞ → 0 as n → ∞.

Thus to guarantee local finiteness of the number of uniform attractors and repel-
lors of (3) the class of admissible functions f has to be narrowed. In the next section
asymptotically autonomous and time-periodic equations will be studied. Another
important special case of (3) occurs if f is polynomial in x. Polynomial equations

ẋ = a0(t) + a1(t)x + . . . + ad(t)x
d , (7)

with d ∈ N0 independent of t, and bounded continuous coefficients a0, a1, . . . , ad,
have been studied extensively, not least for their connection with Hilbert’s Sixteenth
Problem [12–14, 17, 18]. In view of Example 3 it is tempting to formulate

Conjecture 4. The total number of uniform attractors and repellors of (7) with

d ∈ N0 and bounded continuous functions a0, a1, . . . , ad is finite.

In [2] this conjecture is verified (and d shown to be an upper bound on the
total number) for d ≤ 2, and also for d = 3 if a3 does not change its sign and
∫ ∞
0

|a3(t)| dt =
∫ 0

−∞|a3(t)| dt = +∞. Although further special cases will be settled

below, no overall proof of (or counterexample to) Conjecture 4 is known to the
author. Note also that the stipulated uniformity is essential as e.g. every solution
of (7) with d = 1 and a0 = 0, a1(t) = −Arctan t is a global forward attractor.

3. Asymptotically autonomous and periodic equations. Recall that (3) is
termed (two-sided) asymptotically autonomous if for two functions f± : R → R

limt→±∞ f(t, x) = f±(x)
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holds locally uniformly in x; additional regularity (e.g., Lipschitz continuity) is
usually assumed for f± to ensure that the (autonomous) limiting equation

ẋ = f±(x) (8)

has unique local solutions. The following theorem generalises [2, Thm.17] and also
has an immediate bearing on the counting problem.

Theorem 5. Let (3) be asymptotically autonomous and assume that the solutions

of (8) are locally unique. Also, let µ be a uniform attractor or repellor of (3). Then

the limit µ± = limt→±∞ µ(t) exists and is an isolated zero of f±.

Proof. By [2, Thm.13] the limit µ± exists, and f±(µ±) = 0. All that remains to
be shown is that µ± is an isolated zero of f±. Since the argument for backward
time is completely analogous, only the assertion about f+ and µ+ is proved here.
To this end assume that f+(µn) = 0 for all n and some decreasing sequence (µn)
with limn→+∞ µn = µ+. The following argument shows that this assumption is
incompatible with µ being a uniform attractor.

Given δ > 0, pick n ∈ N such that µ+ < µn < µ+ + 1
2δ, and let ε = 1

3 (µn − µ+).
For C > 0, consider the autonomous initial value problem

ẏ = f+(y) − C , y(0) = µn . (9)

Since f+(µn) = 0 and the solution y = y(t) of (9) is locally unique, for every L > 0
a number C = CL > 0 can be chosen so small that

inf{t ≥ 0 : y(t) = µn − ε} > L .

Pick TL large enough to ensure that both |µ(t) − µ+| < ε and

|f(t, x) − f+(x)| < CL ∀x : |x − µn| ≤ ε

hold for all t ≥ TL. Since |µn − µ(TL)| < δ, the solution ϕ(·; TL, µn) tends to µ+ as
t → +∞. Hence the numbers

b = inf
{

t ≥ TL : ϕ(t; TL, µn) = µn − ε
}

as well as

a = sup
{

TL ≤ t < b : ϕ(t; TL, µn) = µn

}

are both finite, and TL ≤ a < b. Furthermore, the estimate f(t, x) > f+(x) − CL

for all t ≥ TL and x ∈ [µn − ε, µn] implies that b − a ≥ L. Define now (x0,σ)σ∈R as
x0,σ = µn if σ = a, and x0,σ = µ(σ) otherwise. Then

‖x0,· − µ(·)‖∞ = |µn − µ(a)| ≤ |µn − µ+| + |µ+ − µ(a)| < δ ,

but also, for all 0 ≤ τ ≤ L,

‖ϕ(· + τ ; ·, x0,·) − µ(· + τ)‖∞ = |ϕ(a + τ ; a, µn) − µ(a + τ)|
≥ |µ+− µn| − |µn− ϕ(a + τ ; a, µn)| − |µ+− µ(a + τ)|
> 3ε − ε − ε = ε .

Since L was arbitrary, µ cannot be a uniform attractor.

Corollary 6. Assume that (3) is asymptotically autonomous and f± is real-analytic.

Then, for every compact set K ⊂ R, the stripe R × K contains only finitely many

uniform attractors and repellors.
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Proof. If, under the stated assumptions, (3) has a uniform attractor or repellor
then f± does not vanish identically and therefore, for every compact set K ⊂ R,

has only finitely many, say N±, zeros in K. Denote by µ
(1)
± < µ

(2)
± < . . . < µ

(N±)
±

all different zeros of f± in K. Also, let µ1 < . . . < µN be any finite family of
uniform attractors and repellors of (3). According to Theorem 5 there exist numbers
1 ≤ m±

1 ≤ . . . ≤ m±
N ≤ N± such that

limt→±∞ µi(t) = µ
(m±

i
)

± (i = 1, . . . , N) .

If µi is a uniform attractor then m+
i+1 ≥ m+

i because solutions do not intersect over

time. If m+
i+1 = m+

i then µi+1 must also be an attractor, and m−
i+1 ≥ m−

i +2. This
follows from the fact that for every solution x between µi and µi+1 the non-empty set

of all accumulation points of {x(t) : t ≤ 0} must contain a zero of f− between µ
(m−

i
)

−

and µ
(m−

i+1)

− that is different from both numbers. If, on the other hand, m+
i+1 > m+

i

then µi+1 could be an attractor or a repellor and thus m−
i+1 ≥ m−

i +1. In either case

therefore m−
i+1 +m+

i+1 ≥ m−
i +m+

i +2. Completely analogous reasoning shows that

the latter inequality also holds if µi is a uniform repellor. Since clearly m−
1 +m+

1 ≥ 2
it follows that m−

i + m+
i ≥ 2i for all i. On the other hand, m−

i + m+
i ≤ N− + N+

for all i, so that 2N ≤ N− + N+. There are thus at most 1
2 (N− + N+) uniform

attractors and repellors entirely contained in R × K.

Corollary 6 implies that Conjecture 4 does hold if (7) is asymptotically au-
tonomous. In fact, the proof shows that d is an upper bound on the total number
of uniform attractors and repellors in this case.

Remark 7. Corollary 6 does not require f to be, for each t, real-analytic in x.
The analyticity of f±, however, is essential as for instance the asymptotically au-
tonomous equation (6) shows for which f± is merely C∞.

Example 8. A standard condition ensuring that ẏ = g(y) has locally unique solu-
tions is that g be Lipschitz continuous. It is well-known that α-Hölder continuity
for some 0 < α < 1 does not suffice for this purpose [19]. Correspondingly, Theorem
5 applies if f± is Lipschitz, but generally fails if it is only α-Hölder. For a concrete
example, define f : R

2 → R as

f(t, x) =

{

0 if x = 0 ,

−xe−|x|−1(

sin2(x−1) + e−t2
)α/2

if x 6= 0 ,

so that f is C∞, and f(t, x) → f±(x) locally uniformly as t → ±∞, where

f±(x) =

{

0 if x = 0 ,

−xe−|x|−1 | sin(x−1)|α if x 6= 0 .

Note that f± is α-Hölder. The same argument as in [2, Exp.16] shows that the
solution µ(t) ≡ 0 is a uniform attractor, yet obviously not an isolated zero of f±.

A second class of equations (3) for which the counting problem arises naturally
consists of periodic equations. Assume from now on that f is T -periodic in t, i.e.,

f(t + T, x) = f(t, x) , ∀(t, x) ∈ R
2 . (10)
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with some T > 0. In this case, the long-time dynamics of (3) is governed by the
Poincaré map ΦT : x 7→ ϕ(T ; 0, x). The domain of ΦT is some maximal open
interval I ⊂ R, and ΦT is strictly increasing on I. As in the autonomous case,
all three notions of attractions coincide for periodic equations. Moreover, every
(forward, pullback, or uniform) attractor and uniform repellor µ is T -periodic, hence
gives rise to, respectively, an attracting and a repelling fixed point µ(0) of ΦT (see
[2, 6] for details). The following observation also settles parts of Conjecture 4.

Theorem 9. Let f satisfy (10) and assume that f is real-analytic in x for each

0 ≤ t < T . Then for every compact set K ⊂ R the stripe R × K contains only

finitely many uniform attractors or repellors of (3).

Proof. Under the stated assumptions on f , [19, Thm.13.III] implies that ΦT is real-
analytic in its domain I. Assume that (µn) with µ1 < µ2 < . . . is a sequence of
uniform attractors or repellors all of which are contained in R × K. Then µ : t 7→
supn∈N µn(t) is easily seen to be a T -periodic solution of (3) as well. Hence µ(0) is
a fixed point of ΦT , as is µn(0) for every n. Since µ is T -periodic, ΦT is well-defined
in some neighbourhood of µ(0). Hence µ(0) is an element of I. Thus the zeros of
the real-analytic function ΦT − idI accumulate in I, and therefore ΦT (x) ≡ x. The
latter, however, is impossible as it would imply that (3) does not have any uniform
attractor or repellor at all.

Corollary 10. Let a0, a1, . . . , ad be continuous and T -periodic (d ∈ N0). If ad(t) 6=
0 for all t, then the total number of uniform attractors and repellors of (7) is finite.

Proof. If d ≤ 3 then (7) has at most d uniform attractors and repellors [2, Thm.21].
Assume in turn that d ≥ 2 and ad(t) 6= 0 for all t. In this case, for every t0 ∈ [0, T ]
there exist positive numbers Dt0 , δt0 such that |ν(t)| ≤ Dt0 holds for all |t− t0| < δ0

and every periodic solution ν of (7). Thus all uniform attractors and repellors of
(7) are contained in R × K with some compact interval K ⊂ R.

Under a definiteness assumption on ad therefore the problem of counting uniform
attractors and repellors of (7) with T -periodic coefficients arises naturally. It is well
known that (7) may have many T -periodic solutions if d ≥ 4. If ad does change
its sign then the situation is more intricate, and many T -periodic solutions may be
found already for d = 3 (see [12, 13] for details). In [2] the relevance of the counting
problem is highlighted further through several results about uniform attractors; in
particular, an averaging type of argument is used to show that

ẋ = ε
(

a0(t) + a1(t)x + . . . + ad(t)x
d
)

(11)

has, for all sufficiently small ε > 0, at most d uniform attractors and repellors

provided that
∫ T

0
ad(t) dt 6= 0. Also, if ε 7→ µε is a continuous parametrisation of

periodic solutions of (11) then, uniformly in t, µε(t) → µ0 as ε → 0, where µ0

denotes an equilibrium of the averaged (and hence autonomous) equation

ẋ = εp(x) with Tp(x) =
∫ T

0
a0(t) dt + x

∫ T

0
a1(t) dt + . . . + xd

∫ T

0
ad(t) dt . (12)

As demonstrated below, the situation is more complicated in the resonant case, that

is, for
∫ T

0 ad(t) dt = 0; the following generalisation of [12, Lem.3.1] will be needed.

Lemma 11. Let I ⊂ R be an open interval containing 0, and let N ∈ N. Assume

that for each j = 1, . . . , N +1 the C1-function Gj : I → R has a finite non-zero limit



22 ARNO BERGER

limx→0 x−gj Gj(x) for some gj ≥ 0. If the numbers g1, . . . , gN+1 are all different,

then there exist real numbers γ1, . . . , γN+1 such that the function

G = γ1G1 + . . . + γN+1GN+1

has N zeros x1 < x2 < . . . < xN in I with G′(xj) 6= 0 for all j = 1, . . . , N .

Proof. Without loss of generality assume that g1 > g2 > . . . > gN+1 ≥ 0, and
also limx→0 x−gj Gj(x) = 1 for all j. Since g1 > 0 there exists δ1 > 0 such that
G1(x) > 0 for all 0 < x ≤ δ1. Let H1 = G1. Obviously, limx→0 x−g1H1(x) = 1 and
H1(x) > 0 whenever 0 < x ≤ δ1. Assume that positive numbers δ1, . . . , δn have
been found which satisfy δn < 1

2δn−1 < 1
4δn−2 < . . . < 21−nδ1, and that a linear

combination Hn of G1, . . . , Gn has been constructed with limx→0 x−gnHn(x) = 1
and Hn(x) > 0 for all 0 < x ≤ δn, but also, for all k = 1, . . . , n − 1,

(−1)kHn(x) > 0 ∀x ∈ [ 12δn−k, δn−k] . (13)

Choose ηn+1 > 0 sufficiently small to ensure that |Hn(x)| > 2ηn+1|Gn+1(x)| for all

x ∈ ⋃n−1
k=0 [12δn−k, δn−k], and let

Hn+1 = − 1
ηn+1

Hn + Gn+1 . (14)

It is easy to check that Hn+1 thus defined satisfies (13) with n replaced by n + 1,
for all k = 1, . . . , n. Furthermore, since gn > gn+1,

x−gn+1Hn+1(x) = − 1
ηn+1

x−gnHn(x)xgn−gn+1 + x−gn+1Gn+1(x) → 1 as x → 0 ,

so that 0 < δn+1 < 1
2δn can be found with Hn+1(x) > 0 whenever 0 < x ≤ δn+1.

Carrying out N steps of (14) yields a linear combination HN+1 of G1, . . . , GN+1

with HN+1(x) > 0 whenever 0 < x ≤ δN+1, and, for all j = 1, . . . , N ,

(−1)jHN+1(x) > 0 ∀x ∈ [ 12δN+1−j , δN+1−j] .

Thus for each j = 1, . . . , N there exists xj between δN+2−j and 1
2δN+1−j with

HN+1(xj) = 0, hence HN+1 has N different zeros in the interval [δN+1,
1
2δ1] ⊂ I. To

provide simple zeros assume without loss of generality that each xj is the supremum

or infimum of H−1
N+1({0}) ∩ [δN+2−j,

1
2δN+1−j ], depending on whether j is odd or

even, and consider the auxiliary function F (x, η) = HN+1(x) + ηG1(x); note that
F (xj , 0) = 0 and ∂

∂η F (xj , 0) = G1(xj) > 0. Thus for each j = 1, . . . , N there

exists an open interval Ij ⊂ [δN+2−j ,
1
2δN+1−j] containing xj , and a C1-function

hj : Ij → R with hj(xj) = 0 and F
(

x, hj(x)
)

= 0 for all x ∈ Ij . Note that

hj(x) > 0 for all x ∈ Ij with (−1)j+1(x − xj) > 0. Consequently, the image
hj(Ij) is a non-degenerate interval containing [0, ηj] for some ηj > 0, and the set
Cj = {hj(x) : x ∈ Ij , h

′
j(x) = 0} of critical values has measure zero. Pick η0 > 0

from
⋂N

j=1

(

hj(Ij)\Cj

)

. For every j = 1, . . . , N there exists xj ∈ Ij such that

hj(xj) = η0 yet (−1)j+1h′
j(xj) > 0. Hence F (xj , η0) = 0 yet

(−1)j
(

H ′
N+1(xj) + η0G

′
j(xj)

)

= (−1)j ∂
∂xF (xj , η0)

= (−1)j+1h′
j(xj)G1(xj)

> 0 .

Thus each xj is a simple zero of G := HN+1 + η0G1 with (−1)jG′(xj) > 0.

Lemma 11 is instrumental in establishing the following generalisation of [2, Cor.30].
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Theorem 12. Assume that d ≥ 3 and ad 6= 0 is continuous and T -periodic with
∫ T

0
ad(t) dt = 0. Then, given N ∈ N, there exists a continuous T -periodic function

a2, satisfying both max(|a2(t)|, |ad(t)|) > 0 for all t and
∫ T

0
a2(t) dt > 0, such that

ẋ = ε
(

−1 + a2(t)x
2 + ad(t)x

d
)

(15)

has N uniform attractors whenever ε > 0 is sufficiently small.

Proof. For notational convenience, in (15) replace ε by εd−1. Setting y = εx trans-
forms (15) into

ẏ = −εd + εd−2a2(t)y
2 + ad(t)y

d . (16)

Let Ad(t) = (1−d)
∫ t

0
ad(s) ds, so that in particular Ad(0) = Ad(T ) = 0; also define

Cd =
(

max0≤t≤T |Ad(t)|
)− 1

d−1 > 0. For |z| < Cd and ε sufficiently small, and with

Qa2(z) =
∫ T

0 a2(t)
(

1 + Ad(t)z
d−1

)
d−2
d−1 dt (|z| < Cd) , (17)

the Poincaré map associated with (16) can be written in the form

ΦT (z) = z + εd−2z2Qa2(z) + εd−1S(z, ε) ; (18)

here S(z, ε) is real-analytic in z (and ε) and converges uniformly as ε → 0. Assume
that z0 > 0 is a zero of Qa2 with Q′

a2
(z0) < 0. Since ∂

∂z

(

z2Qa2(z)+εS(z, ε)
)
∣

∣

(z0,0)
=

z2
0Q

′
a2

(z0) < 0, for all sufficiently small ε > 0 there exists zε near z0 such that

z2
εQa2(zε) + εS(zε, ε) = 0, hence ΦT (zε) = zε, and

0 ≤ Φ′
T (zε) = 1 + εd−2

(

2zεQa2(zε) + z2
εQ′

a2
(zε)

)

+ εd−1 ∂
∂z S(zε, ε)

< 1 .

By [2, Thm.23] the solution ϕ(·; 0, zε) is a uniform attractor of (16). Thus the proof
will essentially be complete once a function a2 has been specified in such a way
that Qa2 has N simple zeros in ]0, Cd[ with negative slope. To this end assume
without loss of generality that ad(0) = 0 and ad(t) 6= 0 for all 0 < t < δ with
δ = inf{0 < t ≤ T : ad(t) = 0} > 0. Thus Ad is not constant on the interval [0, δ].

For each j = 1, . . . , 2N + 1 choose a continuous function a
(j)
2 with a

(j)
2 (0) = 0 and

a
(j)
2 (t) = 0 for all δ ≤ t ≤ T such that

∀k = 0, . . . , j − 1 :
∫ T

0 a
(j)
2 (t)Ak

d(t) dt = 0 , yet
∫ T

0 a
(j)
2 (t)Aj

d(t) dt = 1 .

Such a choice is possible because Ad is continuous and not constant. Note that Qa2

depends linearly upon a2, and, for each j = 1, . . . , 2N + 1,

Q
a
(j)
2

(z) =
∑∞

k=0

(

d−2
d−1

k

)

zk(d−1)
∫ T

0 a
(j)
2 (t)Ak

d(t) dt

= zj(d−1)

(

d−2
d−1

j

)

+ O(z(j+1)(d−1)) .

Thus Lemma 11 applies with Gj = Q
a
(j)
2

and gj = j(d − 1), yielding a continuous

function a2 with a2(0) = 0 and a2(t) = 0 for all δ ≤ t ≤ T such that Qa2 = G has
2N simple zeros in ]0, Cd[ of which N have negative and N have positive slope. To

conclude the proof, replace a2 by −a2, if necessary, to ensure that
∫ T

0 a2(t) dt ≥ 0.
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For all sufficiently small ρ > 0, Qa2+ρ also has N single zeros with negative slope.

Moreover,
∫ T

0 (a2(t) + ρ) dt > 0 and max(|a2(t)|, |ad(t)|) > 0 for every 0 ≤ t ≤ T .
Thus, replacing a2 by a2 + ρ with small positive ρ and extending it T -periodically
finally yields a function that has all properties referred to in the theorem.

Remark 13. (i) Under the conditions of Theorem 12 the averaged equation (12)

associated with (15) has exactly one uniform attractor µ0 = −
(

1
T

∫ T

0
a2(t) dt

)−1/2

and one uniform repellor −µ0. In stark contrast to the non-resonant case, however,
limε→0 µε(t) = 0 holds uniformly in t for every uniform attractor µε of (15). As
ε → 0, therefore, the latter equation exhibits what appears to be an intricate,
genuinely nonautonomous bifurcation.

(ii) In the context of Theorem 12 it is natural to ask for the exact number of
uniform attractors and repellors. Obviously, without additional hypotheses the
perturbational nature of (18) rules out any general statement near the endpoints of
the interval ]−Cd, Cd[. Even for a compact subinterval of the latter, however, it will
in general be difficult to find viable conditions guaranteeing exactly a given number
of attractors and repellors. For concrete equations, obviously the situation may be
much simpler. For a concrete example consider the special case d = 3, T = 2π, and

let a3(t) = 4 sin t, hence A3(t) = −16 sin2(1
2 t) and C3 = 1

4 . With a
(j)
2 = cos jt an

evaluation of (17) yields, for every j ∈ N0,

(2j − 1)z−2jQ
a
(j)
2

(z) = (−1)j+12π

(

2j

j

)

(

1 + (8j − 4)z2 + O(z4)
)

(|z| < 1
4 ) .

In fact, z−2jQ
a
(j)
2

(z) is, for each j ≥ 1, a smooth strictly convex function which in

[0, 1
4 ] vanishes only at z = 0. With this additional structure it is not hard to show

that, just as in the (hypothetical) monomial case Q
a
(j)
2

(z) = z2j, numbers γj can

be found so as to make
∑

j γjQa
(j)
2

= QP

j
γja

(j)
2

exhibit any given number of zeros.
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