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Abstract: By introducing extrinsic noise as well as intrinsic uncertainty into a network
with stochastic events, this paper studies the dynamics of the resulting Markov ran-
dom network and characterizes a novel phenomenon of intermittent synchronization and
desynchronization that is due to an interplay of the two forms of randomness in the sys-
tem. On a finite state space and in discrete time, the network allows for unperturbed (or
“deterministic”) randomness that represents the extrinsic noise but also for small intrin-
sic uncertainties modelled by aMarkov perturbation. It is shown that if the deterministic
random network is synchronized (resp., uniformly synchronized), then for almost all
realizations of its extrinsic noise the stochastic trajectories of the perturbed network
synchronize along almost all (resp., along all) time sequences after a certain time, with
high probability. That is, both the probability of synchronization and the proportion
of time spent in synchrony are arbitrarily close to one. Under smooth Markov pertur-
bations, high-probability synchronization and low-probability desynchronization occur
intermittently in time. If the perturbation is Cm (m ≥ 1) in ε, where ε is a perturbation
parameter, then the relative frequencies of synchronization with probability 1 − O(ε�)

and of desynchronization with probability O(ε�) can both be precisely described for
1 ≤ � ≤ m via an asymptotic expansion of the invariant distribution. Existence and
uniqueness of invariant distributions are established, as well as their convergence as
ε → 0. An explicit asymptotic expansion is derived. Ergodicity of the extrinsic noise
dynamics is seen to be crucial for the characterization of (de)synchronization sets and
their respective relative frequencies. An example of a smooth Markov perturbation of a
synchronized probabilistic Boolean network is provided to illustrate the intermittency
between high-probability synchronization and low-probability desynchronization.
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1. Introduction

Physics, engineering, and sciences of complex systems and processes often encounter
network dynamics that are subject to uncertainties from “individuals” in a population but
also to random influences from the surrounding environment, referred to respectively
as intrinsic and extrinsic noise. While the former is often due to internal complexities
of the individuals one studies, the latter reflects the unpredictable world one lives in
[9,15,16]. This paper proposes and develops the theory ofMarkov random networks as
an appropriate conceptual framework that distinguishes intrinsic and extrinsic noise and
incorporates them into a comprehensive dynamical theory. It has been speculated [8] that
whereas extrinsic noise may cause “noise-induced synchronization”, a familiar scenario
in the context of random dynamical systems [5,6,10], intrinsic noise will drive synchro-
nized individuals apart. The present work provides the first systematic analysis of this
phenomenon. Adopting a simple discrete-time, finite-state framework for the stochastic
dynamics on a network allows for a treatment that goes well beyond the standard ap-
proach available for non-autonomous or random dynamics on a more general space, and
in particular enables an in-depth analysis of the intermittency between synchronization
and desynchronization.

Let S = {s1, . . . , sk} be a finite set endowed with the discrete topology, and � :=
(�,F , μ, θ) an invertible metric dynamical system, that is, (�,F , μ) is a standard
measure space with μ(�) = 1, and θ : � → � is an invertible ergodic μ-preserving
transformation. The view adopted herein is that � provides a model of the extrinsic
noise. Call a stochastic processX = (Xn)n∈N0 with state space S×� aMarkov random
network (MRN) if

(MRN1) X is measurable in distribution, that is, ω �→ P
{
Xn = (si , θnω)|X0 =

(s j , ω)
}
is F-measurable for all n ∈ N0 and i, j ∈ {1, . . . , k};

(MRN2) X is stochastic over �, that is,

∑k

i=1
P
{
Xn = (si , θ

n−mω)|Xm = (s j , ω)
} = 1 ∀ j ∈ {1, . . . , k}

for all n ≥ m and μ-a.e. ω ∈ �;
(MRN3) X has the Markov property over �, that is,

P
{
Xn+1 = (sin+1 , θ

n+1ω) | Xn = (sin , θ
nω)

}

= P
{
Xn+1 = (sin+1 , θ

n+1ω) | X0 = (si0 , ω), . . . , Xn = (sin , θ
nω)

}

for all n ∈ N0, i0, . . . , in, in+1 ∈ {1, . . . , k} and μ-a.e. ω ∈ �.

Given an MRN X , let

pi, j (n, ω) = P
{
Xn = (si , θ

nω)|X0 = (s j , ω)
} ∀i, j ∈ {1, . . . , k}, n ∈ N0, ω ∈ � .

By properties (MRN 2) and (MRN 3), for every n ∈ N0 and μ-a.e. ω ∈ � the matrix

PX (n, ω) := (
pi, j (n, ω)

)
1≤i, j≤k ∈ [0, 1]k×k

is (column-)stochastic, and the 2N0 ⊗ F-measurable function PX : N0 × � → R
k×k

has the cocycle property, that is, for μ-a.e. ω ∈ �,

PX (m + n, ω) = PX (m, θnω)PX (n, ω) ∀m, n ∈ N0 .
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Call PX , an example of a Markov cocycle, the transition cocycle of X ; see also Propo-
sition 2.3 below. Furthermore, let

pi (n, ω) = P
{
Xn = (si , θ

nω)|Xn ∈ S × {θnω}} ∀i ∈ {1, . . . , k}, n ∈ N0, ω ∈ � .

With this, for every n ∈ N0 and μ-a.e. ω ∈ � the vector

pX (n, ω) := (
pi (n, ω)

)
1≤i≤k ∈ [0, 1]k

can be thought of as the distribution of X on the fibre S × {θnω}; see also Proposition
2.3 below.

A special class of MRN are deterministic random networks (DRN) for which, by
definition, the transition cocycle is deterministic in the sense that for every n ∈ N0
and μ-a.e. ω ∈ � each pi, j (n, ω) equals either 0 or 1, that is, PX (n, ω) ∈ {0, 1}k×k .
Throughout this paper, for the sake of clarity, a DRN typically is denoted by X 0, and
its transition cocycle by P0 := PX 0 . Usage of the term “deterministic” emphasizes the
absence of (internal) stochasticity between individual states in S. To put this terminology
into context, note that every DRN X 0 uniquely defines a so-called discrete-time finite-
state random dynamical system (dtfs-RDS) on S over�. Specifically, for all n ∈ N0 and
μ-a.e.ω ∈ � define maps TX 0 = TX 0(n, ω) : S → S such that for all i, j ∈ {1, . . . , k},

TX 0(n, ω)(s j ) = si if and only if p0i, j (n, ω) = 1. (1.1)

It is easy to see that TX 0 inherits the cocycle property from P0, that is,

TX 0(m + n, ω) = TX 0(m, θnω) ◦ TX 0(n, ω)

for all m, n ∈ N0 and μ-a.e. ω ∈ �, and hence is a dtfs-RDS in the sense of [2].
Conversely, every dtfs-RDS on S over � induces a DRN. Prominent examples of DRN
are, for instance, probabilistic Boolean networks that model gene regulations [12].

Adopting terminology from [6] say that a DRN X 0 is synchronized if there exists
an F-measurable function N : � → N such that for all i, j ∈ {1, . . . , k} and μ-a.e.
ω ∈ �,

TX 0(n, ω)(si ) = TX 0(n, ω)(s j ) ∀n ≥ N (ω) ;
if N is constantμ-a.e. on� thenX 0 is uniformly synchronized. Synchronization of DRN
is characterized in [6] in terms of the Lyapunov exponents of the associated (determin-
istic) transition cocycle P0; in particular, it is shown thatX 0 is synchronized if and only
if the Lyapunov exponent 0 of P0 is simple.

The present paper focuses onMRN that are small perturbations of synchronizedDRN.
The main goal is to analyze the effect small perturbations have on synchronization. To
be specific, given a DRNX 0, call a family {X ε : ε ≥ 0} of MRN aMarkov perturbation
of X 0 if for μ-a.e. ω ∈ �

|PX ε (1, ω) − P0(1, ω)| ≤ ε ∀ε ≥ 0 ;
here | · | denotes the norm on R

k×k induced by the �1-norm on R
k .

Markov perturbations of a DRN have a clear physical meaning: With small intrinsic
noise added to the network (which itself allows only for extrinsic noise), transitions
between states now occur with probabilities at most O(ε) or at least 1 − O(ε), rather
than being impossible or certain, respectively. Pertinent examples include probabilistic
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Boolean networks with random gene perturbations, where each gene has a small proba-
bility of flipping its value — naturally, this yields a Markov perturbation of the original
DRN. In general, existence, uniqueness, and attractiveness of an invariant distribution of
an MRN all require certain monotonicity or Perron–Frobenius-type assumptions [3,4].
As the first main result of this work illustrates, however, these assumptions are satisfied
automatically for any Markov perturbation of a synchronized DRN. In the statement,
�+

1 denotes the set of all probability distributions (or vectors) on S, and e1, . . . , ek is the
canonical basis of R

k ; see Sect. 2 below for precise definitions of all technical terms.

Theorem A. Let {X ε} be a Markov perturbation of a synchronized DRN X 0. Then, for
every sufficiently small ε ≥ 0, there exists an invariant distribution pε : � → �+

1 of
X ε, i.e., PX ε (1, ω)pε(ω) = pε(θω), with the following properties:

(i) pε is pull-back attracting for X ε, that is, for every q ∈ �+
1 and for μ-a.e. ω ∈ �,

limn→∞ |PX ε (n, θ−nω)q − pε(ω)| = 0 ;
(ii) pε is forward attracting for X ε, that is, for every q ∈ �+

1 and μ-a.e. ω ∈ �,

limn→∞ |PX ε (n, ω)q − pε(θ
nω)| = 0 ;

(iii) pε is continuous at ε = 0, that is, there exists an F-measurable function J : � →
{1, . . . , k} such that for μ-a.e. ω ∈ �,

limε→0 pε(ω) = eJ (ω) = p0(ω) . (1.2)

Moreover, ifX 0 is uniformly synchronized then the convergence in (1.2) is uniformμ-a.e.
on �.

Theorem A is proved by analyzing Lyapunov exponents of the transition cocycle
PX ε . Specifically, it is the continuity of Lyapunov exponents of PX ε as ε → 0 that
yields the simplicity of the Lyapunov exponent 0 of PX ε for sufficiently small ε. The
reader may want to recall that Lyapunov exponents of random cocycles in general are
discontinuouswith respect to generic perturbations [7,13].Aswill be seen, the continuity
of Lyapunov exponents in the context of TheoremA is due to a contraction property of the
unperturbed cocycle P0. The essence ofTheoremA, then, is that this contraction property
is preserved under Markov perturbations at the level of distributions. At the level of
stochastic trajectories, the property is reflected by a high probability of synchronization.
The second main result states that high-probability synchronization among stochastic
trajectories prevails for large fractions of time.

Theorem B. Let {X ε} be a Markov perturbation of a synchronized DRN X 0. Then, for
every δ > 0 there exist εδ > 0 and Eδ : � → 2N such that for μ-a.e. ω ∈ �,

(i) Eδ(ω) has large density, that is,

lim infn→∞
#(Eδ(ω) ∩ {1, . . . , n})

n
> 1 − δ ;

(ii) any two independent copiesX ,Y ofX ε with 0 ≤ ε < εδ are very likely synchronized
on Eδ(ω), that is,

P
{
Xn = Yn|X0,Y0 ∈ S × {ω}} > 1 − δ ∀n ∈ Eδ(ω) .
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Moreover, if X 0 is uniformly synchronized then Eδ(ω) is co-finite.

It is not hard to see that uniform synchronization of X 0 is equivalent to P0 being
uniformly contracting on the hyper-plane �0 = {v ∈ R

k : ∑k
j=1 v j = 0}, that is, with

the appropriate constants a > 0 and 0 < λ < 1,

|P0(n, ω)v| ≤ aλn|v| ∀n ∈ N0, v ∈ �0

forμ-a.e.ω ∈ �. In fact, P0(n, ω)�0 = {0}whenever n ≥ N (ω). This uniform contrac-
tion property is a special form of uniform hyperbolicity, and as such is preserved under
certain perturbations. It is clear, however, that a generic cocycle will not exhibit this
property, and consequently a synchronized DRN will not in general be uniformly syn-
chronized. (Sect. 6 provides an explicit example in this regard.) In the absence of uniform
synchronization, the proof of Theorem B crucially depends on establishing connections
between the probabilities of synchronization on the one hand and the asymptotic be-
haviour of the invariant distribution on the other hand. Once established, naturally these
connections can be strengthened under additional smoothness assumptions. Specifically,
say that a Markov perturbation {X ε} is Cm (m ≥ 1) if ε �→ PX ε (1, ω) is Cm on [0, ε0]
for some ε0 > 0 and μ-a.e. ω ∈ �. For Cm-Markov perturbations of a synchronized
DRN this paper develops a Taylor formula for the invariant distribution pε of TheoremA,
thus refining (1.2): With explicitly computableF-measurable functions q(�) : � → R

k ,
1 ≤ � ≤ m, for μ-a.e. ω ∈ �,

limε→0
pε(ω) − eJ (ω) − ∑m

�=1 ε�q(�)(ω)/�!
εm

= 0 ; (1.3)

see Sect. 4 for details. Utilizing (1.3), it is possible to study quantitatively the scenarios
of high-probability synchronization as well as low-probability desynchronization. In
fact, these two scenarios coexist in an alternating fashion along most realizations of
the extrinsic noise. To formulate this, the final main result of this work, consider the
(possibly empty) set where pε − eJ is completely degenerate, that is, let

�deg = {q(1) = 0} ∩ {q(2) = 0} ∩ . . . ∩ {q(m) = 0} . (1.4)

Except when μ(�deg) = 1, where it is too degenerate to capture desynchronization,
(1.3) enables a quantitative version of the coexistence claim as follows.

Theorem C. Let {X ε} be a Cm-Markov perturbation (m ≥ 1) of a synchronized DRN
X 0. Assume that μ(�deg) < 1. Then, with the appropriate 0 < a < 1 and � ∈
{1, . . . ,m}, for every sufficiently small δ > 0 there exist εδ > 0, bδ > 0, cδ > 0,
and Eδ, Fδ : � → 2N such that for μ-a.e. ω ∈ �,

(i) Eδ(ω), Fδ(ω) are disjoint, have positive density, and together have large density,
that is,

lim infn→∞
#(Eδ(ω) ∩ {1, . . . , n})

n
> a − δ ,

lim infn→∞
#(Fδ(ω) ∩ {1, . . . , n})

n
> 1 − a − δ ;
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Fig. 1. By Theorem C, typical stochastic trajectories of a smooth Markov perturbation of a synchronized
DRN exhibit alternating high-probability synchronization (n ∈ Eδ) and low-probability desynchronization
(n ∈ Fδ)

(ii) any two independent copiesX ,Y ofX ε with 0 ≤ ε < εδ are very likely synchronized
on Eδ(ω) but somewhat likely desynchronized on Fδ(ω), that is,

P
{
Xn = Yn|X0,Y0 ∈ S × {ω}} ≥ 1 − ε�bδ ∀n ∈ Eδ(ω) , (1.5)

P
{
Xn �= Yn|X0,Y0 ∈ S × {ω}} ≥ ε�cδ ∀n ∈ Fδ(ω). (1.6)

As it turns out, the important quantities a and � in Theorem C can be expressed
rather explicitly in terms of q(1), . . . , q(m). For instance, if μ(�deg) > 0 then simply
a = μ(�deg), and � equals the smallest 1 ≤ i ≤ m for whichμ({q(1) = 0}∩. . .∩{q(i) =
0}) = μ(�deg); see Sect. 5 below for details.

Note that the (very mild) non-degeneracy assumption μ(�deg) < 1 is essential in
Theorem C, as shown by the trivial example X ε ≡ X 0 for which (ii) fails. Infor-
mally put, Theorem C asserts that along almost every extrinsic noise realization, for any
two stochastic trajectories, high-probability synchronization (1.5) and low-probability
desynchronization (1.6) occur along different time subsequences in an alternating way
(see also Figure 1), and moreover, the combined relative frequencies of high-probability
synchronization and low-probability desynchronization are arbitrarily close to 1. Thus
the result rigorously confirms the speculation in [8] mentioned at the outset.

This paper is organized as follows. Section 2 reviews basic properties of MRN per-
taining to the evolution of distributions as well as to Lyapunov exponents. Section 3
proves Theorem A by establishing the continuity of Lyapunov exponents for Markov
perturbations of synchronized DRN, and also proves Theorem B by linking synchro-
nization to invariant distributions. Section 4 studies the invariant distributions of smooth
Markov perturbations, and derives the asymptotic formula (1.3), through which finer
properties of pε can be investigated. Theorem C is proved in Sect. 5 utilizing (1.3). In
Sect. 6 a concrete Markov perturbation of a probabilistic Boolean network illustrates the
main concepts and results.
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2. Basic Properties of MRN

This section establishes a few properties of Markov random networks that are instru-
mental in all that follows. To this end, first a modicum of linear algebra notation and
terminology is reviewed.

Throughout, k ≥ 2 is a positive integer, and K = {1, . . . , k} for convenience; as
needed, endowKwith the topology,σ -algebra, andorder inherited fromR. The canonical
basis and identitymap ofR

k are denoted e1, . . . , ek and Ik , respectively, and | · | is the �1-
norm on R

k , that is, |v| = ∑
j∈K |v j | for every v = ∑

j∈K v j e j ∈ R
k ; as usual, | · | also

denotes the induced norm on R
k×k , that is, |A| = max|v|=1|Av| = max j∈K

∑
i∈K |ai, j |

for every A = (ai, j ) ∈ R
k×k . Given any V ⊂ R

k (or V ⊂ R
k×k), a ∈ R, u ∈ R

k (or
u ∈ R

k×k), and A ∈ R
k×k , write

aV = {av : v ∈ V } , u + V = {u + v : v ∈ V } , AV = {Av : v ∈ V } .

Also, for every a ∈ R let

�a =
{
v ∈ R

k :
∑

j∈K v j = a
}

.

Plainly, �0 is a (k − 1)-dimensional linear subspace of R
k , and �a = ae1 + �0; also,

minv∈�a |v| = |a|, and if u ∈ �a , v ∈ �b then u ± v ∈ �a±b. Furthermore, consider

�+
a = {

v ∈ �a : v j ≥ 0 ∀ j ∈ K
}

,

and note that �+
a = ∅ if a < 0, �+

0 = {0}, and �+
a = a�+

1 if a > 0. In particular, �+
1

may be identified with the set of all probability distributions onK as well as the standard
simplex in R

k , that is, the convex hull of {e1, . . . , ek}.
For every a ∈ R let

Ma =
{
A ∈ R

k×k :
∑

i∈K ai, j = a ∀ j ∈ K

}
.

Plainly,M0 is a (k2−k)-dimensional linear subspace ofR
k×k , and if A ∈ Ma , B ∈ Mb

then A±B ∈ Ma±b and AB ∈ Mab. As is well known (and easy to check), the elements
of Ma are characterized by simple invariance properties.

Proposition 2.1. Let A ∈ R
k×k Then

(i) A ∈ M0 if and only if AR
k ⊂ �0;

(ii) A ∈ Ma for some a ∈ R if and only if A�0 ⊂ �0;
(iii) A ∈ M1 if and only if A�a ⊂ �a for some (and hence every) a �= 0.

Furthermore, consider

M+
a = {A ∈ Ma : ai, j ≥ 0 ∀i, j ∈ K} ,

and note thatM+
a = ∅ if a < 0,M+

0 = {0}, andM+
a = aM+

1 if a > 0. In particular,M+
1

is the set of all (column-)stochastic k × k-matrices. A subclass of the latter particularly
relevant for this work are the stochastic 0-1-matrices,

M+
1,det = {

A ∈ M+
1 : ai, j ∈ {0, 1} ∀i, j ∈ K

}
,

informally referred to as deterministic stochastic matrices. Note that M+
1 and M+

1,det
are closed under matrix multiplication, just as M0 and M1 are. Not surprisingly, M+

1
and M+

1,det also are characterized by simple invariance properties.
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Proposition 2.2. Let A ∈ R
k×k Then

(i) A ∈ M+
1 if and only if A�+

a ⊂ �+
a for some (and hence every) a > 0, and in this

case |A| = 1;
(ii) A ∈ M+

1,det if and only if A{e1, . . . , ek} ⊂ {e1, . . . , ek}.
Recall from the Introduction that with every MRN one can associate the transition

cocycle PX and distribution pX . The following properties of PX and pX immediately
follow from the definition of anMRN; property (ii) justifies usage of the term “cocycle”.

Proposition 2.3. Let X be an MRN with transition cocycle PX and distribution pX .
Then, for μ-a.e. ω ∈ �,

(i) PX (0, ω) = Ik and PX (n, ω) ∈ M+
1 for all n ∈ N0;

(ii) PX has the cocycle property

PX (m + n, ω) = PX (m, θnω)PX (n, ω) ∀m, n ∈ N0 ,

and hence in particular

PX (n, ω) = PX (1, θn−1ω)PX (1, θn−2ω) · · · PX (1, ω) ∀n ∈ N ;
(iii) pX (n, ω) = PX (n, ω)pX (0, ω) ∈ �+

1 for all n ∈ N0.

Remark 2.4. (i) For the purpose of this paper, only the distributional structure of anMRN
X matters. Whenever convenient, therefore, PX and pX may be replaced by 2N0 ⊗ F-
measurable functions P ′ : N0 × � → M+

1 and p′ : N0 × � → �+
1 , respectively, such

that

μ
(⋃

n∈N0

{
P ′(n, · ) �= PX (n, · )}

)
= μ

(⋃

n∈N0

{
p′(n, · ) �= pX (n, · )}

)
= 0 ,

and the assertions of Proposition 2.3, with P ′, p′ instead of PX , pX , hold for all ω ∈ �;
cf. [2, sec.1.3.7].

(ii) One might call any 2N0 ⊗F-measurable function P : N0 × � → M+
1 aMarkov

cocycle provided that it has the cocycle property. Except for convenience, however,
nothing new is captured by this terminology: By Proposition 2.3, PX is aMarkov cocycle
for everyMRNX , and conversely everyMarkov cocycle, e.g., the cocycle P ′ mentioned
in (i), is the transition cocycle of an MRN.

To describe the long-time behaviour of an MRN X , say that X converges in distri-
bution if for μ-a.e. ω ∈ �,

limn→∞
∣∣PX (n, ω)u − PX (n, ω)v

∣∣ = 0 ∀u, v ∈ �+
1 ,

or equivalently, limn→∞ |PX (n, ω)v| = 0 for allv ∈ �0.As the following lemmashows,
in the special case of a DRN, convergence in distribution is the same as synchronization.
Note that by Proposition 2.2 an MRN X is a DRN precisely if PX (n, ω) ∈ M+

1,det for
all n ∈ N0 and μ-a.e. ω ∈ �.

Lemma 2.5. Let X 0 be a DRN. Then X 0 converges in distribution if and only if X 0 is
synchronized.



Intermittent Synchronization in Finite-State Random Networks... 1953

Proof. For the dtfs-RDS TX 0 associated with X 0 by (1.1),

TX 0(n, ω)(s j ) = si if and only if P0(n, ω)e j = ei .

Also, P0(n, ω) ∈ M+
1,det, and so |P0(n, ω)ei − P0(n, ω)e j | ∈ {0, 2}. Now, if X 0 is

synchronized then for all i, j ∈ K and μ-a.e. ω ∈ �,

P0(n, ω)ei = P0(n, ω)e j ∀n ≥ N (ω) .

Since every v ∈ �0 is a linear combination of {ei − e j : i, j ∈ K}, also P0(n, ω)v = 0
for all n ≥ N (ω). Conversely, if X 0 converges in distribution then for μ-a.e. ω ∈ � the
set

L(ω) := {n ∈ N0 : P0(n, ω)ei = P0(n, ω)e j ∀i, j ∈ K}
is co-finite, and hence with N (ω) = inf L(ω) the DRN X 0 is synchronized. ��

As will be seen next, even in the more general case of an arbitrary MRN it is possible
to characterize convergence in distribution. To this end, given anMRNX with transition
cocycle PX , call an F-measurable function p : � → �+

1 an invariant distribution of X
if for μ-a.e. ω ∈ �,

PX (n, ω)p(ω) = p(θnω) ∀n ∈ N0 .

Lemma 2.6. LetX beanMRNwith transition cocycle PX . Then the following statements
are equivalent:

(i) X converges in distribution;
(ii) there exists an invariant distribution p of X such that for every q ∈ �+

1 and μ-a.e.
ω ∈ �,

limn→∞ |PX (n, θ−nω)q − p(ω)| = 0

(“p is pull-back attracting”);
(iii) there exists an invariant distribution p of X such that for every q ∈ �+

1 and μ-a.e.
ω ∈ �,

limn→∞ |PX (n, ω)q − p(θnω)| = 0 (2.1)

(“p is forward attracting”).

Moreover, the invariant distributions p in (ii) and (iii) are uniquely determined and
coincide μ-a.e. on �.

Proof. To prove (i)⇒(ii), assume X converges in distribution. For μ-a.e. ω ∈ � and
every � ∈ N pick N�(ω) ∈ N such that

|PX (n, ω)ei − PX (n, ω)e j | <
1

�
∀i, j ∈ K, n ≥ N�(ω) .

Also pick m� ∈ N with m� ≥ � and μ({N� ≤ m�}) > 0; assume w.l.o.g. that (m�)�∈N
is increasing. By Poincaré recurrence, it can be assumed that θ−nω ∈ {N� ≤ m�} for
infinitely many n; in particular, pick M�(ω) > m� + M�−1(ω) + M�−1(θ

−1ω), where
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M0 := 0, such that θ−M�(ω)ω ∈ {N� ≤ m�} for μ-a.e. ω ∈ � and all � ∈ N. With this,
consider the compact set

C�(ω) := PX (M�(ω), θ−M�(ω)ω)�+
1 ⊂ �+

1 .

Since N�(θ
−M�(ω)ω) ≤ m� whereas M�(ω) > N�(ω), clearly diamC�(ω) < 1/�.

Moreover, by the cocycle property, for every n ≥ M�(ω),

PX (n, θ−nω)�+
1 = PX (M�(ω), θ−M�(ω)ω)PX (n − M�(ω), θ−nω)�+

1 ⊂ C�(ω) ,

(2.2)
and hence in particular C�+1(ω) ⊂ C�(ω). It follows that for μ-a.e. ω ∈ � there
exists a unique p(ω) ∈ �+

1 with {p(ω)} = ⋂
�∈N C�(ω). Clearly, p : � → �+

1 can
be chosen to be F-measurable. Furthermore, for μ-a.e. ω ∈ � and all � ∈ N, since
M�+1(θω) ≥ M�(ω) + 1,

p(θω) ∈ C�+1(θω) = PX (1, ω)PX (M�+1(θω) − 1, θ1−M�+1(θω)ω)�+
1

⊂ PX (1, ω)C�(ω) .

Since � has been arbitrary, p(θω) = PX (1, ω)p(ω), that is, p is an invariant distribution
of X . Finally, given q ∈ �+

1 , deduce from (2.2) that PX (n, θ−nω)q ∈ C�(ω) for μ-a.e.
ω ∈ � and n ≥ M�(ω). Thus

|PX (n, θ−nω)q − p(ω)| ≤ 2

�
∀n ≥ M�(ω) ,

and consequently limn→∞ |PX (n, θ−nω)q − p(ω)| = 0.
To prove (ii)⇒(iii), let p : � → �+

1 be an invariant distribution as in (ii). For μ-a.e.
ω ∈ � and every � ∈ N pick N ′

�(ω) ∈ N such that

|PX (n, θ−nω)e j − p(ω)| <
1

�
∀ j ∈ K, n ≥ N ′

�(ω) .

Similarly to above, pick m′
� ∈ N with m′

� ≥ � and μ({N ′
� ≤ m′

�}) > 0 such that
(m′

�)�∈N is increasing. Again by Poincaré recurrence, one can choose M ′
�(ω) ≥ m′

� with

θM ′
�(ω)ω ∈ {N ′

� ≤ m′
�}, and consequently

|PX (M ′
�(ω), ω)e j − p(θM ′

�(ω)ω)| <
1

�
∀ j ∈ K .

For every q ∈ �+
1 and μ-a.e. ω ∈ �, therefore, since p is invariant,

|PX (n, ω)q − p(θnω)|
= ∣∣PX (n − M ′

�(ω), θM ′
�(ω)ω)

(
PX (M ′

�(ω), ω)q − p(θM ′
�(ω)ω)

)∣∣

≤ |PX (M ′
�(ω), ω)q − p(θM ′

�(ω)ω)| <
1

�
,

provided that n ≥ M ′
�(ω). Since � ∈ N has been arbitrary, this proves (2.1).

Finally, to see that (iii)⇒(i) simply choose q = ei and q = e j , respectively, and
observe that for μ-a.e. ω ∈ �,

|PX (n, ω)ei − PX (n, ω)e j | ≤ |PX (n, ω)ei − p(θnω)|
+|PX (n, ω)e j − p(θnω)| → 0 as n → ∞ ,
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showing that X converges in distribution.
The assertion regarding the μ-a.e. uniqueness of the invariant distribution is obvious

(and justifies usage of the common symbol p). ��
Note that for a DRN X 0 every invariant distribution p of X 0 is concentrated on a

single state, that is, p(ω) = eJ (ω) for a unique J (ω) ∈ K. Lemmas 2.5 and 2.6 together
therefore have the following corollary.

Proposition 2.7. Let X 0 be a synchronized DRN. Then there exist F-measurable func-
tions J : � → K and N± : � → N such that for μ-a.e. ω ∈ �,

P0(n, ω)eJ (ω) = eJ (θnω) ∀n ∈ N0 ,

and also, for every j ∈ K,

P0(n, ω)e j = eJ (θnω) ∀n ≥ N+(ω) ,

P0(n, θ−nω)e j = eJ (ω) ∀n ≥ N−(ω) .

Any function J as in Proposition 2.7 henceforth is referred to as a synchronization
index of the DRN X 0, and N+, N− are a forward and a pull-back synchronization time,
respectively. Note that J is determined uniquely μ-a.e. on �, whereas N± clearly are
not. Also, it is not hard to see that N± can be assumed constant μ-a.e. on � whenever
X 0 is uniformly synchronized.

Remark 2.8. As pointed out by the referee, it would be possible to define, for μ-a.e.
ω ∈ �,

N+(ω) = min{n ∈ N : P0(n, ω)e j = eJ (θnω) ∀ j ∈ K} ,

and similarly for N−. However, to emphasize that crucial parts of this work, notably
expression (4.1) below, are independent of the specific choice for (forward or pull-
back) synchronization times, no such definitions are adopted. Unless explicitly stated
otherwise, synchronization times N± can be arbitrary as long as they comply with
Proposition 2.7; see also Proposition 6.1 below.

The remainder of this section reviews a few pertinent facts regarding Lyapunov
exponents. Given an MRN X , for every ω ∈ � and v ∈ R

k let

λX (ω, v) = lim supn→∞
log |PX (n, ω)v|

n
, (2.3)

with the convention that log 0 := −∞. As a consequence of the classical Multiplicative
Ergodic Theorem [2,11], for μ-a.e. ω ∈ � the lim sup in (2.3) actually is a limit, and
λX (ω, · ) attains at most k different real values which are constant μ-a.e. on �. In fact,
since |PX (n, ω)| = 1 and PX (n, ω)�a ⊂ �a for every a by Propositions 2.1 and 2.3,
a bit more can be said.

Proposition 2.9. Let X be an MRN. Then, for μ-a.e. ω ∈ � and every v ∈ R
k ,

λX (ω, v) ≤ 0 , (2.4)

and equality holds in (2.4) whenever v �∈ �0; in particular, 0 is a Lyapunov exponent
of X .
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In the special case of a DRN, the Lyapunov exponents λ0 := λX 0 can equal only
−∞ or 0; as it turns out, they also characterize synchronization.

Proposition 2.10. [6, Thm.A] Let X 0 be a DRN. Then X 0 is synchronized if and only if
for μ-a.e. ω ∈ �,

λ0(ω, v) =
{−∞ if v ∈ �0 ,

0 if v �∈ �0 .

By noting that ei − e j ∈ �0 for all i, j ∈ K, a simple sufficient condition for
convergence in distribution of an MRN follows immediately.

Proposition 2.11. Let X be an MRN. If λX (ω, v) < 0 for μ-a.e. ω ∈ � and all v ∈ �0
then X converges in distribution.

Remark 2.12. In [4], a randomPerron–Frobenius theorem is established for positive (that
is, strongly monotone) cocycles under log-integrability conditions, which in turn yields
convergence in distribution. In general, however, the transition cocycle PX of an MRN
X neither is positive (due to possible zero entries) nor does it satisfy the log-integrability
conditions.

3. Convergence in Distribution Under Markov Perturbations

This section establishes two of the main results of this work, Theorems A and B. The
proofs depend on three simple observations, of which the continuity of Lyapunov expo-
nents under Markov perturbations (Lemma 3.3) may be of independent interest. Conver-
gence in distribution, as well as continuity of the invariant distribution, follow directly
from the continuity of Lyapunov exponents. First, observe that the cocycle property and
an induction argument immediately yield

Proposition 3.1. Let {X ε} be a Markov perturbation of a DRN X 0. Then, for μ-a.e.
ω ∈ �,

|PX ε (n, ω) − P0(n, ω)| ≤ nε ∀ε ≥ 0, n ∈ N0 .

Next, given any synchronized DRN X 0, recall from Proposition 2.7 the notion of
forward synchronization time N+ : � → N. Along a typical realization of the extrinsic
noise the value of N+ reasonably often is not too large.

Lemma 3.2. Let X 0 be a synchronized DRN, and N+ a forward synchronization time.
Let m ∈ N be such that μ({N+ ≤ m}) > 0. Then, for μ-a.e. ω ∈ � there exists a
sequence (n�)�∈N such that n�+1 − n� ≥ m and N+(θn�ω) ≤ m for all � ∈ N, as well
as lim sup�→∞ �/n� ≥ μ({N+ ≤ m})/m.

Proof. For μ-a.e. ω ∈ �, the Birkhoff ergodic theorem yields

limn→∞
#({k ∈ N : N+(θkω) ≤ m} ∩ {1, . . . , n})

n
= μ({N+ ≤ m}) ,

and hence for at least one 1 ≤ i ≤ m, possibly depending on ω,

lim supn→∞
#({k ∈ N : N+(θkω) ≤ m} ∩ (i + mN) ∩ {1, . . . , n})

n
≥ μ({N+ ≤ m})

m
.

In particular, the set {k ∈ N : N+(θkω) ≤ m} ∩ (i + mN) is infinite, and writing it
as {n� : � ∈ N} with n1 < n2 < . . . yields a sequence (n�) that has all the asserted
properties. ��
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The final preliminary observation establishes the continuity of all Lyapunov expo-
nents of MRN that are Markov perturbations of a synchronized DRN. As pointed out in
the Introduction, synchronization of the unperturbed DRN is crucial for this result.

Lemma 3.3. Let {X ε} be a Markov perturbation of a synchronized DRN X 0. Then, for
every sufficiently small ε ≥ 0, for μ-a.e. ω ∈ � and every v ∈ R

k , the Lyapunov
exponents of X ε satisfy

λX ε (ω, v) < 0 if v ∈ �0 , λX ε (ω, v) = 0 if v �∈ �0 . (3.1)

Moreover, λX ε is continuous at ε = 0, that is, limε→0 λX ε (ω, v) = λ0(ω, v).

Proof. By Propositions 2.9 and 2.10 all assertions are correct in case v �∈ �0, so hence-
forth assumev ∈ �0. SinceX 0 is synchronized, pickm ∈ Nwithμ({N+ ≤ m}) > 0, and
fix ε < 1/m. Forμ-a.e.ω ∈ �, let (n�)�∈N be as inLemma3.2. Then P0(m, θn�ω)v = 0,
and since n�+1 − n� ≥ m,

|PX ε (n�+1 − n�, θ
n�ω)v|

≤ |PX ε (m, θn�ω)v| = ∣∣(PX ε (m, θn�ω) − P0(m, θn�ω)
)
v
∣∣ ≤ mε|v| , (3.2)

by Proposition 3.1. Recall from Proposition 2.1 that PX ε (n, ω)�0 ⊂ �0 for all n, so
(3.2) can be iterated,

|PX ε (n�, ω)v| = |PX ε (n� − n�−1, θ
n�−1ω)PX ε (n�−1 − n�−2, θ

n�−2ω)

· · · PX ε (n2 − n1, θ
n1ω)PX ε (n, ω)v|

≤ (mε)�−1|v| ,
which in turn yields, utilizing Lemma 3.2,

λX ε (ω, v) = limn→∞
log |PX ε (n, ω)v|

n
≤ lim inf�→∞

(� − 1) log(mε) + log |v|
n�

= log(mε) lim sup�→∞
� − 1

n�

≤ log(mε)μ({N+ ≤ m})
m

< 0 .

Thus (3.1) holds, and letting ε → 0 shows that limε→0 λX ε (ω, v) = −∞ whenever
v ∈ �0. Proposition 2.10 then concludes the proof. ��

The scene is now set for a rather straightforward

Proof of Theorem A. To prove the existence of an invariant distribution, as well as (i)
and (ii), simply observe that Lemma 3.3 and Proposition 2.11 together imply that X ε

converges in distribution for all sufficiently small ε > 0. By Lemma 2.6, there exists
a unique invariant distribution of X ε, denoted pε, that is both pull-back and forward
attracting.

To establish (iii), that is, the continuity of ε �→ pε at ε = 0, recall from Proposition
2.7 that P0(N−(ω), θ−N−(ω)ω)v = eJ (ω) for μ-a.e. ω ∈ � and every v ∈ �+

1 , where
N− denotes a pull-back synchronization time. By the invariance of pε and Proposition
3.1,

|pε(ω) − eJ (ω)|
= |PX ε (N−(ω), θ−N−(ω)ω)pε(θ

−N−(ω)ω) − eJ (ω)|
= ∣∣(PX ε (N−(ω), θ−N−(ω)ω) − P0(N−(ω), θ−N−(ω)ω)

)
pε(θ

−N−(ω)ω)
∣∣

≤ N−(ω)ε , (3.3)
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and hence clearly limε→0 pε(ω) = eJ (ω) for μ-a.e. ω ∈ �.
Finally, if X 0 is uniformly synchronized then N−(ω) ≤ N for μ-a.e. ω ∈ � and the

appropriate N ∈ N, so (3.3) shows that the convergence in (1.2) is uniform on a set of
full μ-measure. ��

Note that, informally put, Theorem A provides a description, at the level of (invari-
ant) distributions, of what synchronization looks like for a sufficiently small Markov
perturbation of a synchronized DRN. In order to rephrase this description at the level of
stochastic trajectories (Theorem B), the following simple linear algebra observation is
helpful.

Proposition 3.4. Let v ∈ �+
1 . Then v j = 1 − |v − e j |/2 for every j ∈ K.

Proof of Theorem B. Fix ε0 > 0 so small that all conclusions in Theorem A hold when-
ever 0 ≤ ε < ε0. In particular, therefore, given δ > 0, for μ-a.e. ω ∈ � there exists
N (ω) ∈ N and f (ω, δ) > 0 such that

|pX ε (n, ω) − pε(θ
nω)| <

δ

2
∀n ≥ N (ω) and |pε(ω) − eJ (ω)| <

δ

2
∀ε < f (ω, δ) .

Pick 0 < εδ ≤ ε0 so small thatμ({ f ( · , δ) ≥ εδ}) > 1−δ. Letting�δ = { f ( · , δ) ≥ εδ}
and Eδ(ω) = {n ≥ N (ω) : θnω ∈ �δ} for convenience, by the Birkhoff ergodic
theorem,

limn→∞
#(Eδ(ω) ∩ {1, . . . , n})

n
= μ(�δ) > 1 − δ ,

which proves (i). Furthermore, if 0 < ε < εδ and n ∈ Eδ(ω) then |pX ε (n, ω) −
eJ (θnω)| < δ by the triangle inequality, and

P
{
Xn = (sJ (θnω), θ

nω)|X0 ∈ S × {ω}}

= pX ε (n, ω)J (θnω) = 1 − |pX ε (n, ω) − eJ (θnω)|
2

> 1 − δ

2
,

where the second equality is due to Proposition 3.4. Thus, if X ,Y are two independent
copies of X ε, with 0 < ε < εδ , then for all n ∈ Eδ(ω),

P
{
Xn = Yn|X0,Y0 ∈ S × {ω}}

≥ P
{
Xn = Yn = (sJ (θnω), θ

nω)|X0,Y0 ∈ S × {ω}} >

(
1 − δ

2

)2

> 1 − δ ,

which proves (ii).
Finally, if X 0 is uniformly synchronized then, by Theorem A it can be assumed that

f (ω, δ) is independent of ω. But then μ(�δ) = 1, indeed μ
(⋂

n≥0 θ−n�δ

) = 1, and
so for μ-a.e. ω ∈ � the set Eδ(ω) = {n ≥ N (ω)} is co-finite. ��
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4. Invariant Distributions for Smooth Markov Perturbations

This section establishes an asymptotic expansion for the invariant distribution of a Cm-
Markov perturbation {X ε}, with m ≥ 1, of a synchronized DRN X 0. Remember that
due to the “deterministic” nature of X 0, at all times each state leads to precisely one
subsequent state. By contrast, due to the presence of intrinsic noise, states ofX ε typically
have a small but positive probability of leading tomore than one subsequent state.Asmay
be expected, these deviations can be described in terms of the derivatives of ε �→ PX ε

at ε = 0. To do this explicitly, for every 0 ≤ � ≤ m let

P(�)

X ε (n, ω) = d�

dε�
PX ε (n, ω)

∣∣∣∣
ε=0

;

note that P(0)
X ε (n, ω) = P0(n, ω) ∈ M+

1,det, and clearly P(�)

X ε is 2N0 ⊗ F-measurable,

with P(�)

X ε (n, ω) ∈ M0 for all 1 ≤ � ≤ m, n ∈ N0, and μ-a.e. ω ∈ �. Moreover, for
every n ∈ N0 and μ-a.e. ω ∈ �,

limε→0
PX ε (n, ω) − P0(n, ω) − ∑m

�=1 ε�P(�)

X ε (n, ω)/�!
εm

= 0 .

Throughout this section, assume that the DRN X 0 is synchronized. By Proposition
2.7, X 0 admits an (essentially unique) synchronization index J as well as a pull-back
synchronization time N−. The following simple observation will be used several times
below.

Proposition 4.1. Let X 0 be a synchronized DRN, and N− a pull-back synchronization
time. Then, for μ-a.e. ω ∈ �,

P0(N−(ω), θ−N−(ω)ω)v = 0 ∀v ∈ �0 .

Utilizing J and N−, as well as P(�)

X ε , define F-measurable functions q(0), q(1), . . . ,

q(m) : � → R
k as

q(0)(ω) = eJ (ω) ,

and inductively for 1 ≤ � ≤ m,

q(�)(ω) =
∑�−1

i=0

(
�

i

)
P(�−i)
X ε (N−(ω), θ−N−(ω)ω)q(i)(θ−N−(ω)ω) . (4.1)

Note that q(0) ∈ �+
1 , whereas clearly q

(�)(ω) ∈ �0 for all 1 ≤ � ≤ m and μ-a.e. ω ∈ �;
in particular,

q(1)(ω) = P(1)
X ε (N

−(ω), θ−N−(ω)ω)eJ (θ−N−(ω)ω)
.

The main result of this section, Lemma 4.2 below, provides a Taylor formula approx-
imately expressing the invariant distribution of X ε in terms of the quantities q(�),
1 ≤ � ≤ m. As the attentive reader will have noticed, by definition these quantities
depend on the choice of N−. However, it is readily seen that choosing a different N−
yields the same q(1), . . . , q(m) for μ-a.e. ω ∈ �.
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Lemma 4.2. Let {X ε} be a Cm-Markov perturbation (m ≥ 1) of a synchronized DRN
X 0. For every sufficiently small ε ≥ 0 let pε be the invariant distribution of X ε, as in
Theorem A. Then, for μ-a.e. ω ∈ �,

limε→0
pε(ω) − eJ (ω) − ∑m

�=1 ε�q(�)(ω)/�!
εm

= 0 . (4.2)

Proof. With N− denoting any pull-back synchronization time of X 0, write ω− :=
θ−N−(ω)ω for convenience. To establish (4.2), it will be shown that for every 0 ≤ k ≤ m
and μ-a.e. ω ∈ �,

limε→0
pε(ω) − eJ (ω) − ∑k

�=1 ε�q(�)(ω)/�!
εk

= 0 . (4.3)

By Theorem A(ii), clearly (4.3) is correct for k = 0, with an “empty” sum understood
to equal 0, as usual. Assume that (4.3) is correct for some 0 ≤ k < m. Then

PX ε (n, ω) = P0(n, ω) +
∑k

�=1

ε�

�! P
(�)

X ε (n, ω) +
εk+1

(k + 1)! P
(k+1)
X ε (n, ω)

+εk+1Rε(n, ω) ,

with the appropriate Rε(n, ω) ∈ M0 and limε→0 Rε(n, ω) = 0, as well as

pε(ω) = eJ (ω) +
∑k

�=1

ε�

�! q
(�)(ω) + εkrε(ω) ,

with the appropriate rε(ω) ∈ �0 and limε→0 rε(ω) = 0. Thus, by the invariance of pε

and eJ , Proposition 4.1, and the definition of q(�),

pε(ω) − eJ (ω) = PX ε (N−(ω), ω−)pε(ω
−) − eJ (ω)

= (
PX ε (N−(ω), ω−) − P0(N−(ω), ω−)

)
pε(ω

−)

=
(∑k

�=1

ε�

�! P
(�)

X ε (N
−(ω), ω−) +

εk+1

(k + 1)! P
(k+1)
X ε (N−(ω), ω−)

+εk+1Rε(N
−(ω), ω−)

)

·
(
eJ (ω−) +

∑k

�=1

ε�

�! q
(�)(ω−) + εkrε(ω

−)

)

=
∑k

�=1

∑�−1

i=0

ε�

i !(� − i)! P
(�−i)
X ε (N−(ω), ω−)q(i)(ω−)

+ εk+1
∑k

i=0

1

i !(k + 1 − i)! P
(k+1−i)
X ε (N−(ω), ω−)q(i)(ω−)

+ εk+1R′
ε(n, ω)

=
∑k+1

�=1

ε�

�! q
(�)(ω) + εk+1R′

ε(n, ω) ,

with the appropriate R′
ε(n, ω) ∈ M0 and limε→0 R′

ε(n, ω) = 0. Thus (4.3) is correct
with k replaced by k + 1, and induction establishes (4.2). ��
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Remark 4.3. For a homogeneousMarkov chain, a series expansion (or updating formula)
for invariant distributions under (regular as well as singular) perturbations has been
derived in [1]. In this context, the transition cocycle PX ε may be viewed as a “random"
version of a Markov chain, with the Markov perturbation as a regular perturbation.
Accordingly, Lemma 4.2 may be viewed as a random version of the series expansion in
[1] under regular perturbations.

The remainder of this section develops a simple condition guaranteeing that the
invariant distribution pε of a Markov perturbation {X ε} is degenerate at ε = 0 in that
q(1) = 0 in (4.2). In this, a crucial role is played by the quantity

d(ω) := P(1)
X ε (1, ω)eJ (ω) ,

which may be thought of as the first-order (one-step) probability dissipation under the
Markov perturbation. Notice that d is F-measurable, and d(ω) ∈ �0 for μ-a.e. ω ∈ �.
Moreover, except for the J (θω)-th component, all components of d(ω) are non-negative,
that is, d(ω) j ≥ 0 for every j ∈ K\{J (θω)}, and hence d(ω)J (θω) ≤ 0. From the cocycle
properties of PX ε and P0, it is readily deduced that for all n ∈ N and μ-a.e. ω ∈ �,

P(1)
X ε (n, ω) =

∑n−1

�=0
P0(n − 1 − �, θ�+1ω)P(1)

X ε (1, θ�ω)P0(�, ω) , (4.4)

and consequently q(1) can be written neatly in terms of d, thus revealing its pull-back
nature,

q(1)(ω) =
∑N−(ω)−1

�=0
P0(N−(ω) − 1 − �, θ1+�−N−(ω)ω)d(θ�−N−(ω)ω)

=
∑N−(ω)−1

�=0
P0(�, θ−�ω)d(θ−�−1ω) . (4.5)

In order to trace the dissipation of probability, for μ-a.e. ω ∈ � consider the subset S•
of S given by

S•(ω) = {s j ∈ S : P0(1, ω)e j = eJ (θω)} .

Thus S•(ω) contains precisely those states that lead to the synchronized state sJ in a
single step. By invariance, sJ (ω) ∈ S•(ω). Also, consider the subset of � given by

�• = {ω ∈ � : d(ω) j = 0 ∀s j �∈ S•(θω)} ∈ F .

Thus, for ω ∈ �• first-order probability dissipation occurs only to states that immedi-
ately lead to the synchronized state; see also Figure 2. Intuitively, it is plausible that if
first-order probability dissipation is thus restricted for all times up to the (finite) syn-
chronization time of X 0 then pε differs from the single-state invariant distribution eJ of
X 0 only by higher orders of ε, that is, q(1) = 0.

Lemma 4.4. Let {X ε} be a Cm-Markov perturbation (m ≥ 1) of a synchronized DRN
X 0, with pull-back synchronization time N−. Then, for μ-a.e. ω ∈ �, the following
hold:

(i) If d(θ−1ω) �= 0 then q(1)(ω) �= 0;

(ii) If d(θ−1ω) = 0 and ω ∈ ⋂N−(ω)−1
�=1 θ�+1�• then q(1)(ω) = 0.
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Proof. Notice first that each of the N−(ω) terms in (4.5) lies in�0, with all components
non-negative, except possibly for the J (ω)-th component. Thus q(1) = 0 if and only
if P0(�, θ−�ω)d(θ−�−1ω) = 0 for all � = 0, 1, . . . , N−(ω) − 1. With this, on the
one hand, if d(θ−1ω) �= 0 then q(1)(ω) �= 0, which proves (i). On the other hand, if
ω ∈ θ�+1�• for some 1 ≤ � ≤ N−(ω) − 1 then P0(1, θ−�ω)d(θ−�−1ω) lies in �0,
with all components non-negative, except for the J (θ1−�ω)-th component, for which

P0(1, θ−�ω)d(θ−�−1ω)J (θ1−�ω)

=
∑k

j=1
P0(1, θ−�ω)J (θ1−�ω), j d(θ−�−1ω) j

=
∑

j∈S•(θ−�ω)
P0(1, θ−�ω)J (θ1−�ω), j d(θ−�−1ω) j

=
∑

j∈S•(θ−�ω)
d(θ−�−1ω) j =

∑k

j=1
d(θ−�−1ω) j = 0 ,

where the second and fourth equality are due toω ∈ θ�+1�•. Thus P0(1, θ−�ω)d(θ−�−1

ω) = 0, and by the cocycle property P0(�, θ−�ω)d(θ−�−1ω) = 0 as well, that is,
q(1)(ω) = 0, which proves (ii). ��
Remark 4.5. In a spirit similar to Lemma 4.4(ii), one might derive conditions for higher-
order degeneracy of pε at ε = 0, that is, for q(1) = . . . = q(�) = 0 for some 2 ≤
� ≤ m. However, since the pertinent analogues of (4.1) and (4.5) are considerably more
cumbersome in this case, such conditions likely are of limited practical use.

5. Alternating Patterns of Synchronization and Desynchronization

This section is devoted to the proof of Theorem C. As with Theorem B, the main idea is
to link the behaviour of the invariant distribution pε as ε → 0 to synchronization at the
level of trajectories. Utilizing the asymptotic expansion (4.2) enables a refinement of
Theorem B, via quantitative descriptions of high-probability synchronization as well as
low-probability desynchronization. For the sake of clarity, these two scenarios are first
addressed in two separate lemmas; a combination of both results then yields Theorem C.
Throughout, assume that {X ε} is a Cm-Markov perturbation (m ≥ 1) of a synchronized
DRN X 0. For convenience, for every 1 ≤ � ≤ m let

�(�) = {q(1) = 0} ∩ . . . ∩ {q(�) = 0} ∈ F ; (5.1)

note that �(0) := � ⊃ �(1) ⊃ . . . ⊃ �(m) = �deg, with �deg considered already in
(1.4).

Lemma 5.1. Assume that μ
(
�(�)

)
> 0 for some 1 ≤ � ≤ m. Then, for every 0 < δ <

μ
(
�(�)

)
there exist εδ > 0, bδ : [0, εδ) → R with bδ(ε) ≥ 0 and limε→0 bδ(ε) = 0, and

Eδ : � → 2N such that for μ-a.e. ω ∈ �,

(i) lim infn→∞
#(Eδ(ω) ∩ {1, ..., n})

n
> μ(�(�)) − δ;

(ii) for any two independent copies X , Y of X ε with 0 ≤ ε < εδ ,

P
{
Xn = Yn|X0,Y0 ∈ S × {ω}} ≥ 1 − ε�bδ(ε) ∀n ∈ Eδ(ω) .
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Fig. 2. For ω ∈ �•, first-order probability dissipation (dashed arrows) under a smooth Markov perturbation
occurs only to states that immediately lead to the synchronized state (black squares) of the synchronized DRN
(solid arrows)

Proof. Fix ε0 > 0 so small that all conclusions of TheoremAholdwhenever 0 ≤ ε < ε0,
and pick any 0 < δ < μ

(
�(�)

)
. By Lemma 4.2, for μ-a.e. ω ∈ �(�),

limε→0
pε(ω) − eJ (ω)

ε�
= 0 , (5.2)

so by Egorov’s theorem there exists Cδ ⊂ �(�) with μ(Cδ) > μ
(
�(�)

) − δ such that the
convergence in (5.2) is uniform on Cδ . Letting bδ(ε) = ε + supω∈Cδ

|pε(ω) − eJ (ω)|/ε�

for 0 < ε < ε0, note that limε→0 bδ(ε) = 0 =: bδ(0), and

|pε(ω) − eJ (ω)| ≤ ε�(bδ(ε) − ε) ∀0 ≤ ε < ε0, ω ∈ Cδ .

Also, by Theorem A(i) there exists N (ω) ∈ N such that

|pX ε (n, ω) − pε(θ
nω)| ≤ ε�+1 ∀n ≥ N (ω) .

Let Eδ(ω) = {n ≥ N (ω) : θnω ∈ Cδ}. Then, for μ-a.e. ω ∈ � the set Eδ(ω) ⊂ N

satisfies (i), and for every n ∈ Eδ(ω),

P
{
Xn = (sJ (θnω), θ

nω)|X0 ∈ S × {ω}} = pX ε (n, ω)J (θnω)

= 1 − |pX ε (n, ω) − eJ (θnω)|
2

≥ 1 − ε�bδ(ε)

2
,
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provided that 0 ≤ ε < ε0. Consequently, for any two independent copies X , Y of X ε

with 0 ≤ ε < ε0,

P
{
Xn = Yn|X0,Y0 ∈ S × {ω}} ≥ P

{
Xn = Yn = (sJ (θnω), θ

nω)|X0,Y0 ∈ S × {ω}}

≥
(
1 − ε�bδ(ε)

2

)2

≥ 1 − ε�bδ(ε)

for every n ∈ Eδ(ω), which proves (ii) with εδ = ε0. ��
Remark 5.2. As seen in the above proof, in Lemma 5.1 one may stipulate that εδ be
independent of δ: Simply take εδ = ε0 with ε0 so small that all conclusions of TheoremA
hold whenever 0 ≤ ε < ε0. The wording of Lemma 5.1 has been chosen for consistency
with Lemma 5.3 below, as well as Theorems B and C, where εδ does depend on δ.

Lemma 5.3. Assume that μ
(
�(�−1) \ �(�)

)
> 0 for some 1 ≤ � ≤ m. Then, for every

0 < δ < μ
(
�(�−1) \ �(�)

)
there exist εδ > 0, cδ > 0, and Fδ : � → 2N such that for

μ-a.e. ω ∈ �,

(i) lim infn→∞
#(Fδ(ω) ∩ {1, ..., n})

n
> μ

(
�(�−1) \ �(�)

) − δ;

(ii) for any two independent copies X , Y of X ε with 0 ≤ ε < εδ ,

P
{
Xn �= Yn|X0,Y0 ∈ S × {ω}} ≥ ε�cδ ∀n ∈ Fδ(ω) .

Proof. Fix ε0 > 0 as in the proof of Lemma 5.1, and pick any 0 < δ < μ
(
�(�−1)\�(�)

)
.

By Lemma 4.2, for μ-a.e. ω ∈ �(�−1) \ �(�),

limε→0
pε(ω) − eJ (ω) − ε�q(�)(ω)/�!

ε�
= 0 , (5.3)

so one can choose Dδ ⊂ �(�−1) \ �(�) with μ(Dδ) > μ
(
�(�−1) \ �(�)

) − δ such
that the convergence in (5.3) is uniform on Dδ , but also 0 < cδ ≤ 1/6 such that
2cδ ≤ |q(�)(ω)/�!| ≤ 2/cδ for all ω ∈ Dδ . Let 0 < εδ ≤ min{ε0, c2δ } be so small that

∣∣∣∣∣
pε(ω) − eJ (ω) − ε�q(�)(ω)

�!

∣∣∣∣∣
< ε�c2δ ∀0 ≤ ε < εδ, ω ∈ Dδ .

As in the proof of Lemma 5.1, there exists N (ω) ∈ N with

|pX ε (n, ω) − pε(θ
nω)| ≤ ε�+1 ∀n ≥ N (ω) .

Then Fδ(ω) := {n ≥ N (ω) : θnω ∈ Dδ} ⊂ N satisfies (i) for μ-a.e. ω ∈ �. Moreover,
for every n ∈ Fδ(ω),

P
{
Xn = (sJ (θnω), θ

nω)|X0 ∈ S × {ω}}

= pX ε (n, ω)J (θnω) = 1 − |pX ε (n, ω) − eJ (θnω)|
2

≥ 1 − ε�+1 + c2δ ε
� + 2ε�/cδ

2
≥ 1 − ε�(c2δ + 1/cδ) ,
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provided that 0 ≤ ε < εδ , but also

P
{
Xn �= (sJ (θnω), θ

nω)|X0 ∈ S × {ω}}

= |pX ε (n, ω) − eJ (θnω)|
2

≥ cδε
� − ε�+1 + c2δ ε

�

2
≥ ε�cδ(1 − cδ) ,

and consequently, for any two independent copies X , Y of X ε with 0 ≤ ε < εδ ,

P
{
Xn �= Yn|X0,Y0 ∈ S × {ω}} ≥ 2

(
1 − ε�(c2δ + 1/cδ)

)
ε�cδ(1 − cδ)

= ε�
(
2cδ(1 − cδ) − 2ε�(1 − cδ)(c

3
δ + 1)

)

≥ 2ε�cδ(1 − cδ)(1 − 2cδ)

≥ ε�cδ ,

which establishes (ii). ��
By combining Lemmas 5.1 and 5.3, it is now straightforward to provide a

Proof of Theorem C. Deduce from

0 < 1 − μ(�deg) =
∑m

i=1
μ

(
�(i−1) \ �(i))

that μ
(
�(i−1) \ �(i)

)
> 0 for at least one 1 ≤ i ≤ m, and so

L := {
1 ≤ i ≤ m : μ

(
�(i−1) \ �(i)) > 0

} �= ∅ . (5.4)

Letting � = max L for convenience, clearly μ
(
�(�−1)

) ≥ μ
(
�(�−1) \ �(�)

)
> 0 and

μ
(
�(�)

) = μ(�deg) < 1, as well as
∑

i∈L μ
(
�(i−1) \ �(i)

) = 1 − μ
(
�(�)

)
.

Assume first that μ
(
�(�)

)
> 0, and hence 0 < μ

(
�(�−1) \ �(�)

)
< 1. By Lemma

5.3, for every i ∈ L and 0 < δ < μ
(
�(i−1) \ �(i)

)
there exist 0 < εδ,i ≤ 1, cδ,i > 0,

and Fδ,i : � → 2N such that for μ-a.e. ω ∈ �,

lim infn→∞
#(Fδ,i (ω) ∩ {1, . . . , n})

n
> μ

(
�(i−1) \ �(i)) − δ

m
,

and for any two independent copies X , Y of X ε with 0 ≤ ε < εδ,i ,

P
{
Xn �= Yn|X0,Y0 ∈ S × {ω}} ≥ εi cδ,i ≥ ε�cδ,i ∀n ∈ Fδ,i (ω) .

The sets Fδ,i are disjoint by construction.With this, for every 0 < δ < mini∈L μ
(
�(i−1)\

�(i)
)
, let ε′

δ = mini∈L εδ,i > 0 and cδ = mini∈L cδ,i > 0, as well as Fδ(ω) =⋃
i∈L Fδ,i (ω). Then,

lim infn→∞
#(Fδ(ω) ∩ {1, . . . , n})

n

>
∑

i∈L

(
μ

(
�(i−1) \ �(i)) − δ

m

)
≥ 1 − μ

(
�(�)

) − δ .
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By Lemma 5.1, for every 0 < δ < μ
(
�(�)

)
there exist εδ,0 > 0, bδ,0(ε) ≥ 0 with

limε→0 bδ,0(ε) = 0 = bδ,0(0), and Eδ : � → 2N such that for μ-a.e. ω ∈ �,

lim infn→∞
#(Eδ(ω) ∩ {1, . . . , n})

n
> μ

(
�(�)

) − δ ,

and for any two independent copies X ,Y of X ε with 0 ≤ ε < εδ,0,

P
{
Xn = Yn|X0,Y0 ∈ S × {ω}} ≥ 1 − ε�bδ,0(ε) ∀n ∈ Eδ(ω) .

Again, Eδ(ω)∩Fδ(ω) = ∅ by construction, provided that δ < min
{
μ

(
�(�)

)
, μ

(
�(i−1)\

�(i)
) : i ∈ L

}
. Pick ε′

δ,0 > 0 so small that bδ,0(ε) ≤ cδ whenever 0 ≤ ε < ε′
δ,0. With

εδ := min{ε′
δ, εδ,0, ε

′
δ,0} > 0 and bδ := cδ , therefore, all assertions of the theorem are

correct with a = μ
(
�(�)

)
.

Next assume that μ
(
�(�)

) = 0 but 0 < μ
(
�(�−1)

) = μ
(
�(�−1) \ �(�)

)
< 1. Then

#L ≥ 2 and � ≥ 2, hence the same argument as before applies, and Theorem C holds,
with � replaced by � − 1 ≥ 1 and a = μ

(
�(�−1)

)
.

It remains to consider the case ofμ
(
�(�)

) = 0butμ
(
�(�−1)

) = μ
(
�(�−1)\�(�)

) = 1,
or equivalently #L = 1. As in the proof of Lemma 5.3, for every 0 < δ < 1 one can
choose Cδ ⊂ � with μ(Cδ) > 1 − δ and 0 < cδ ≤ 1/6 such that 2cδ ≤ |q(�)(ω)/�!| ≤
2/cδ for all ω ∈ Cδ , and with 0 < εδ ≤ min{ε0, c2δ } sufficiently small,

∣∣∣∣∣
pε(ω) − eJ (ω) − ε�q(�)(ω)

�!

∣∣∣∣∣
≤ ε�c2δ ∀0 ≤ ε < εδ, ω ∈ Cδ .

Also, there exists N (ω) ∈ N with

|pX ε (n, ω) − pε(θ
nω)| ≤ ε�+1 ∀n ≥ N (ω) .

The set Dδ(ω) := {n ≥ N (ω) : θnω ∈ Cδ} ⊂ N satisfies

limn→∞
#(Dδ(ω) ∩ {1, . . . , n})

n
= μ(Cδ) > 1 − δ

for μ-a.e. ω ∈ �, and for every n ∈ Dδ(ω),

P
{
Xn = (sJ (θnω), θ

nω)|X0 ∈ S × {ω}} ≥ 1 − ε�(c2δ + 1/cδ) ,

P
{
Xn �= (sJ (θnω), θ

nω)|X0 ∈ S × {ω}} ≥ ε�cδ(1 − cδ) ,

provided that 0 ≤ ε < εδ . Consequently, for any two independent copies X ,Y of X ε

with 0 ≤ ε < εδ , and with bδ := 2(c2δ + 1/cδ) > 2 + cδ ,

P
{
Xn = Yn|X0,Y0 ∈ S × {ω}} ≥ (

1 − ε�(c2δ + 1/cδ)
)2

≥ 1 − ε�bδ ,

P
{
Xn �= Yn|X0,Y0 ∈ S × {ω}} ≥ 2

(
1 − ε�(c2δ + 1/cδ)

)
ε�cδ(1 − cδ) ≥ ε�cδ ,

whenever n ∈ Dδ(ω). In this case, all assertions of the theorem are correct with any 0 <

a < 1: Simply let Eδ(ω) be a subset of Dδ(ω)with density aμ(Cδ) > a−aδ > a−δ and
take Fδ(ω) = Dδ(ω)\Eδ(ω), with density (1−a)μ(Cδ) > 1−a−(1−a)δ > 1−a−δ.

��
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Remark 5.4. As the above proof shows, one may stipulate bδ = cδ in Theorem C, except
when μ

(
�(i−1) \ �(i)

) = 1 for some (necessarily unique) 1 ≤ i ≤ m.

For a simple corollary, recall the first-order probability dissipation d(ω) from Sect.
4.

Corollary 5.5. Let {X ε} be a Cm-Markov perturbation (m ≥ 1) of a synchronized DRN
X 0. If μ({ω ∈ � : d(θ−1ω) = 0}) < 1 then the conclusions of Theorem C hold with
� = 1 and a = μ

(
�(1)

)
if μ

(
�(1)

)
> 0, or any 0 < a < 1 if μ

(
�(1)

) = 1.

Proof. By Lemma 4.4(i), q(1) �= 0 unless d(θ−1ω) = 0. Thus μ
(
�(1)

)
< 1, and the

same arguments as in the proof of Theorem C show that a = μ
(
�(1)

)
, provided that

μ
(
�(1)

)
> 0, and otherwise 0 < a < 1 is arbitrary. ��

6. An Example

This short final section illustrates some of the concepts and results of this work in the
context of a concrete random network. Throughout, fix k ≥ 2 and recall from Sect. 2 that
M+

1,det denotes the set of all deterministic stochastic k × k-matrices; for convenience,
henceforth write M+

1,det as M. Every A ∈ M corresponds to a unique map TA of
S = {s1, . . . , sk} into itself in a natural way, via

TA(s j ) = si if and only if Ai, j = 1 . (6.1)

Note that #TAS = rank A. For every � ∈ N consider

M[�] := {A ∈ M : rank A = � } .

Obviously,M[�] = ∅ whenever � > k, andM is the disjoint union ofM[1], . . . ,M[k].
Moreover, #M = kk whereas

#M[�] =
(
k
�

) ∑�

j=1
(−1)�− j j k

(
�

j

)
∀� ∈ N ;

in particular, #M[1] = k and #M[k] = k!; see also Figure 3. Let ν be the uniform
distribution onM, that is, let ν({A}) = 1/kk for every A ∈ M. (The reader will notice
that all subsequent observations remain virtually unchanged as long as, more generally,
ν({A}) > 0 for every A ∈ M.) With these ingredients, consider the metric dynamical
system � = (�,F , μ, θ), where the probability space is

(�,F , μ) =
⊗

z∈Z(M, 2M, ν) ,

and the map θ is the left shift

θ
(
(Az)z∈Z

) = (Az+1)z∈Z ∀(Az)z∈Z ∈ � .

The dynamical system �, an example of a Bernoulli shift, is invertible and ergodic [14].
In probability theory parlance,� provides the canonicalmodel of a (bi-infinite) sequence
of i.i.d random variables uniformly distributed on M. Note that every ω ∈ � has the
form (Az)z∈Z, with Az ∈ M for all z, and is often written as such in what follows.

To define a DRN X 0 over �, let

TX 0(0, ω) = idS , TX 0(n, ω) = TAn−1 ◦ · · · ◦ TA0 ∀n ∈ N, ω ∈ �, (6.2)



1968 A. Berger, H. Qian, S. Wang, Y. Yi

Fig. 3. Illustrating typicalmaps TA : S → S associatedwith A ∈ Mvia (6.1), for k = 7where #M = 823543

the transition cocycle of which simply is

P0(n, ω) =
{
Ik if n = 0 ,

An−1 · · · A0 if n ≥ 1 .

Given ω ∈ �, notice that the sequence
(
rank P0(n, ω)

)
n∈N0

in K is non-increasing and

hence convergent. In particular, if Am ∈ M[1] for somem ∈ N0 then rank P0(n, ω) = 1
for all n > m. Since ν(M[1]) > 0, this occurs for μ-a.e. ω ∈ �, and the function
N+
0 : � → N given by

N+
0 (ω) =

{
min{n ∈ N : rank P0(n, ω) = 1} if limn→∞ rank P0(n, ω) = 1 ,

1 otherwise ,

is well-defined. Plainly, rank P0(n, ω) = 1 for μ-a.e. ω ∈ � and all n ≥ N+
0 (ω), and

hence N+
0 is a forward synchronization time of X 0. In fact, N+

0 ≤ N+ for every forward
synchronization time N+ of X 0; in particular, X 0 is synchronized. Notice that, on the
one hand, N+

0 is unbounded, since for every n ∈ N,

μ({N+
0 ≥ n}) ≥ μ

({ω : A0, . . . , An−2 ∈ M[k]}
) = ν(M[k])n−1 > 0 .

On the other hand,

μ({N+
0 ≥ n}) ≤ μ

({ω : A0, . . . , An−2 �∈ M[1]}
) = (

1 − ν(M[1])
)n−1

,

and consequently
∫
�
N+
0 dμ ≤ ∑∞

n=1

(
1 − ν(M[1])

)n−1 = 1/ν(M[1]) < ∞.
In a completely analogous manner,

(
rank P0(n, θ−nω)

)
n∈N0

is non-increasing for

every ω ∈ �, and N−
0 : � → N given by

N−
0 (ω) =

{
min{n ∈ N : rank P0(n, θ−nω) = 1} if limn→∞ rank P0(n, θ−nω) = 1 ,

1 otherwise ,

is a pull-back synchronization time ofX 0, with N−
0 ≤ N− for every pull-back synchro-

nization time N− of X 0. It is readily seen that for every n ∈ N the sets {N−
0 ≥ n} and
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θn−1{N+
0 ≥ n} differ only by a μ-nullset, and so μ({N−

0 = n}) = μ({N+
0 = n}), even

though clearly μ({N−
0 �= N+

0 }) ≥ 2ν(M[1])
(
1 − ν(M[1])

)
> 0. As far as they pertain

to the dynamics of X 0, the above observations yield

Proposition 6.1. The DRN X 0 defined in (6.2) is synchronized, with synchronization
index J : � → K given by eJ (ω) = limn→∞ A−1 · · · A−ne1 for μ-a.e. ω = (Az)z∈Z ∈
�. An F-measurable function N : � → N is a forward (or pull-back) synchronization
time of X 0 if and only if N ≥ N+

0 (or N ≥ N−
0 ) μ-a.e. on �; in particular, X 0 is not

uniformly synchronized.

To construct a Markov perturbation of X 0, recall from Sect. 2 that M0 denotes the
linear space of all real zero-column-sum k × k-matrices, and consider any function
f : M → M0. Notice that A+ ε f (A) ∈ M+

1 for all sufficiently small ε ≥ 0 if and only
if

f (A)i, j (1 − 2Ai, j ) ≥ 0 ∀i, j ∈ K . (6.3)

Motivated by (6.3), fix any f : M → M0 with the property that for each A ∈ M either
f (A) = 0, or else

f (A)i, j (1 − 2Ai, j ) > 0 ∀i, j ∈ K ; (6.4)

assume w.l.o.g. that | f (A)| ≤ 1 as well. For every ε ≥ 0, n ∈ N, and ω ∈ �, letting

PX ε (n, ω) = (
An−1 + min{ε, 1} f (An−1)

) · · · (A0 + min{ε, 1} f (A0)
)

(6.5)

then yields an MRN X ε, in fact a C∞-Markov perturbation of X 0. Notice that by the
strict inequality in (6.4), each state of Xn in S×{θnω} has a positive probability of leading
to any state of Xn+1 in S×{θn+1ω}, unless f (An) = 0. Regardless of the specific choice
of f , Theorems A and B apply. Moreover, deduce from P(1)

X ε (1, ω) = f (A0) and (4.4)
that

P(1)
X ε (n, ω) =

∑n−1

�=0
An−1 · · · A�+1 f (A�)A�−1 · · · A0 ,

and hence the quantities d and q(1) introduced in Sect. 4 now read

d(ω) = f (A0)eJ (ω) ,

q(1)(ω) =
∑N−

0 (ω)−1

�=0
A−1 · · · A�+1−N−

0 (ω) f (A�−N−
0 (ω))eJ (θ

�−N−
0 (ω)

ω)
. (6.6)

Also, the set S• ⊂ S is S•(ω) = {s j : A0e j = eJ (θω)}, and hence S•(ω) �= S unless
A0 ∈ M[1]. Since either all components of d(ω) are zero or else none is, by virtue of
(6.4),

�• = {ω : f (A0) = 0 or A1 ∈ M[1]} .

Finally, by utilizing (6.6) the set of first-order degeneracy �(1) = {q(1) = 0} considered
in Sect. 5 can be described explicitly also.

Proposition 6.2. Let X ε be the MRN defined in (6.5). Then, for all sufficiently small
ε > 0,

�(1) = {ω = (Az)z∈Z : f (A−1) = . . . = f (A−N−
0 (ω)) = 0} ,

up to a μ-nullset.
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Notice that the value of μ
(
�(1)

) ≤ ν({ f = 0}) is completely determined by the set
{ f = 0} ⊂ M. For instance, μ

(
�(1)

) = 1 if and only if { f = 0} = M, and μ
(
�(1)

) =
ν({ f = 0}) if { f = 0} ⊂ M[1]. Apart from trivial situations like these, computing
the exact value of μ(�(1)) may be a challenge. (In probability theory parlance, μ

(
�(1)

)

equals the probability that for a sequence (A1, A2, . . .)ofmatrices, chosen independently
and uniformly from M, the product An · · · A1 attains rank 1 before f (An) �= 0 for
the first time.) Regardless of the exact value, however, Theorem C applies with � =
1 whenever { f = 0} �= M. Provided that f : M → M0 is not identically zero
(and satisfies (6.4) unless f (A) = 0), therefore, the MRN X ε defined in (6.5) for
all sufficiently small ε > 0 does exhibit the intermittency between high-probability
synchronization and low-probability desynchronization established in that theorem.
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