
Wave Motion 35 (2002) 339–353
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Abstract

The model of an inextensible uniform string subject to constant gravitation is used to study the propagation of transversal
waves in one-dimensional continua. Perturbation analysis of the equations of motion yields as a result the local representation
of small waves in terms of a normalized Riemann function. By means of the latter, shape and speed of propagating waves
may be discussed. A refined analysis confirms that on first order, small waves travel along characteristics of the unperturbed
equilibrium configuration. An explicit power law for the waves’ amplitudes is given, and the findings are supported by the
numerical results. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

One-dimensional continuum models of strings have repeatedly gained importance as basic tools for engineering
applications. As a recent application, we mention the usage of various string models in the dynamical analysis
of tethered satellite systems [2]. When dealing with extensible strings one typically observes both longitudinal
and transversal waves [10]. The dynamics of longitudinal waves, however, is regarded as being of minor impor-
tance in many cases. For example, tethers between satellites usually are rather stiff thus giving rise to longitudi-
nal waves of very small amplitude. Furthermore, these waves typically propagate extremely fast which generally
makes their numerical treatment quite delicate [8]. Moreover, it is well known that the characteristic properties
of longitudinal waves heavily depend on the underlying constitutive law, while this is not the case for transver-
sal waves [11]. Focussing on transversal waves may therefore be endorsed for numerical as well as conceptual
reasons.

Obviously, the simplest way of ruling out the longitudinal waves is by considering inextensible strings. When
discretizing their equations of motion, one is naturally led to the model of a chain of rigid bodies linked by frictionless
hinges [9]. Despite its simplicity, the chain model accurately reflects a lot of effects exhibited by the inextensible
string. For example, the following experiment may easily be given numerical support: holding the chain’s end in
one hand and perturbing the vertical equilibrium position by tapping the middle of the chain with one finger of the
other hand, one clearly observes two propagating waves (see Fig. 1; we encourage the reader to effectively carry
out this experiment). The wave approaching the free end may easily be studied due to its decreasing velocity and
increasing amplitude. (This last effect is the more noticeable when the smaller mass is attached at the free end.) The
wave propagating towards the upper end of the chain is not as easily observed because it moves increasingly faster
and, at the same time, its amplitude decreases.
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Fig. 1. Travelling waves in the inextensible string pendulum as exhibited by the discrete chain model (320 links; the attached endmass amounts
1
21 of the total mass).

Fig. 2. Angles of the local tangent during the propagation of a small perturbation.
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Fig. 3. The string pendulum’s tension during the propagation of a small perturbation.

These effects may be made more visible by plotting the anglesϕ of the chain links. Fig. 2 clearly exhibits the
specific evolution of amplitudes mentioned above. Moreover, a projection of the surface in Fig. 2 lucidly shows the
propagation of two distinct waves: Light (dark) regions of Fig. 5 correspond to large (small) values ofϕ. Additionally,
the reflections at the ends can be seen very clearly.

From the solution for the angles, the evolution of the axial forcesN in the chain links may also be calculated (see
Fig. 3 or [7,9]). For the (vertical) equilibrium position,N clearly is linear. As can be seen from Fig. 3, the tension
can be considered piecewise linear with high accuracy during the whole propagation process of a small perturbation.
Large oscillations in amplitude exclusively occur at reflection times while small oscillations may be observed at
crossings of the two waves. The small initial fluctuation is due to the fact that the conditions of equilibrium are not
met by the initial data.

As indicated above, the chain model may be used to quickly gain some insight into the dynamics of a string
pendulum. Moreover, its numerical treatment does not pose serious problems. When falling back on the continuum
model there are, however, some interesting questions implicitly mentioned above which deserve an analysis in their
own right: How do the form and amplitude of waves evolve under propagation? Where do the oscillations of the
tension come from? How about the reflected waves? The aim of the present paper as well as its sequel [7] is to
rigorously deal with these questions by means of perturbation analysis and explicit local representations of solutions
for the string’s governing equations.

2. Equations of motion

We consider an inextensible string and denote bys the arc-length with respect to an arbitrary reference point
fixed on the string (Fig. 4). At timet , the material point with coordinates finds itself atr(s, t) in the EuclideanE3.
Due to inextensibility, we have

rs(s, t) · rs(s, t) = 1, (1)

i.e. rs(s, t) is a unit vector tangent to the string’s configuration. Assuming perfect flexibility for the string (which
just says that the contact torque vanishes identically), we observe that the shear component of the contact forcen
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Fig. 4. Inextensible string kinematics at timet .

vanishes (this is an immediate consequence of the balance of angular momentum, cf. [1]); therefore,n necessarily
is a multiple ofrs(s, t), i.e.

n(s, t) = N(s, t) rs(s, t). (2)

Assuming smooth configurations (i.e. no kinks), we deduce the classical form of the equation of motion with respect
to an inertial frame,

µrtt(s, t) = ns(s, t) + µg where (s, t) ∈ (−∞,∞) × (0,∞) (3)

by means of the balance of linear momentum [1]. The partial differential equation (3) governs the dynamics of a
string with constant massµ per unit length subject to the stationary and homogenous gravitational fieldg. While (2)
and (3) analogously hold for extensible strings, a significant difference should be taken notice of: in the extensible
case, tension and deformation are directly linked via constitutive laws. For inextensible strings, however, these laws
reduce to the kinematic constraint (1); the tensionN may then be interpreted as a Lagrange multiplier within a
variational approach from which the equation of motion could equally be derived [3].

After imposing initial values on configuration and velocity,

r(s,0) = r̄(s) and rt (s,0) = v̄(s), (4)

solutions of (2) and (3) may be looked for. Clearly, compatibility with (1) has to be maintained. For the initial
conditions, therefore

r̄′(s) · r̄′(s) = 1 as well as r̄′(s) · v̄′(s) = 0 (5)

must hold identically. Using Eqs. (1) and (2), we rewrite (3) by introducing tangent and velocity vectors, respectively,
according to

t(s, t) := rs(s, t), (6a)

v(s, t) := rt (s, t), (6b)

which yields the system

tt = vs , (7a)

µvt = (N t)s + µg. (7b)
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As the quantityN in (7a) and (7b) is itself unknown, this system has to be augmented by (1), i.e.

0 = (t · t)s, (7c)

which of course is an algebraic rather than a differential equation.
Combining the quantities (6a) and (6b) andN into a single variablew, we may have that Eqs. (7a)–(7c) take the

(formal) structure of aconservation law,

M wt = [F(w)]s + b =: A(w)ws + b, (8)

wheret, v, g are identified with their coordinate triples with respect to the orthonormal basisi, j, k (cf. Fig. 4), and

w =




t

v

N


 , M =




E O 0

O µE 0

0T 0T 0


 , A(w) =




O E 0

NE O t

tT 0T 0


 , b =




0

µg

0


 ,

hereE denotes the identity matrix. Due to (7c) the mass matrixM clearly is singular. According to [6], a curve
implicitly defined byz(s, t) = 0 is calledcharacteristic for (8) if det[ztM−zsA(w)] = 0; from the latter condition,
we obtain the differential equationszs = 0 andµz2

t −Nz2
s = 0, respectively. The first equation yields characteristic

curves which are parallel to thes-axis in a(t, s)-plane. These curves will not concern us further because they simply
incorporate the axial inextensibility corresponding to the kinematic constraint (7c). On the other hand, characteristic
curves arising from the second equation may be written ass = sc(t), thusz(s, t) = s − sc(t) and consequently

ṡc =
(
N(sc, t)

µ

)1/2

or ṡc = −
(
N(sc, t)

µ

)1/2

. (9)

For the string pendulum discussed in Section 1, relations (9) have been integrated utilizing the numerical solution for
N ; individual results are depicted in Fig. 5b . As indicated by Fig. 5a, the spatial maxima (forϕ) of the propagating
waves seem to closely follow the calculated characteristic curves. In the next section, we shall show that this
observation holds true in great generality, at least as far as our perturbation analysis extends.

In passing, we note that the conservation law (8) ishyperbolic only if N > 0 [6]; there are no (real) characteristic
curves for points with negative tension. Finally, we point out that due to symmetry, the solutions of the eigenvalue
equation det[λM − A(w)] = (µλ2 − N)2 = 0 come up in pairs: there is no distinguished direction orthogonal
to the string’s tangent. We deduce from (1) thatt · dt = 0; consequently, all partial derivatives oft are orthogonal
to the string’s configuration. More formally,ts = κ t⊥1 and tt = ω t⊥2 , with t⊥1,2 denoting unit vectors orthogonal
to t, andω(s, t) andκ(s, t) being, respectively, the angular velocity oft and the curvature at the points; by virtue
of (7a), clearlyvs = tt = ω t⊥2 (see Fig. 4).

Near any individual point on the string, we therefore observe a purely transversal motion which is neatly described
by the rotation of the tangent vector. In an inextensible string, only transversal waves can propagate with finite
velocity. This last statement should be compared to the extensible case where typically longitudinal waves can (and
will) occur.

Considering the quantitiest andN the most interesting, we may eliminatev from (7a) and (7b) by differentiation,
and thus obtain

µttt − N tss = Nsst + 2Ns ts . (10)

Since the second order differential oft satisfiest · d2t = −dt · dt, we havet · ttt = −ω2 as well ast · tss = −κ2.
Projecting (10) onto the tangential direction therefore yields

Nss = −µω2 + Nκ2. (11)

It is a remarkable feature of the latter equation that it contains no derivatives ofN with respect tot : the further
dynamics of the string does not depend on the temporal evolution of the tension. Given the dynamical state of the
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Fig. 5. Top view of Fig. 2 (a) compared to the characteristics starting insc(0) = 3
4 l (b). The gray domain is bounded by the characteristics

sc(0) = 3
4 l ± 1

15l.

string at timet , the tension at that time may be calculated from (11) which by then is just an ordinary differential
equation. Especially, the tension in the initial state follows from the initial conditions (4),

Nss(s,0) − κ̄2(s)N(s,0) = −µω̄2(s), (12)

whereκ̄2(s) = |r̄′′(s)|2 andω̄2(s) = |v̄′(s)|2. We conclude from these observations that any longitudinal information
is instantaneously transmitted to every point of the string; there cannot exist a finite velocity of propagation of
longitudinal waves.

In case of a planar motion, the equations of motion can be given a more convenient form. Denoting byi, k an
orthonormal basis of an inertial frame, we writet(s, t) = i sinϕ(s, t) + k cosϕ(s, t). Hereϕ simply measures the
angle betweenk and t. Since we have dt = t⊥ dϕ and d2t = t⊥ d2ϕ − t dϕ ⊗ dϕ for the first and second order
differentials, respectively, (10) may be rewritten as

µϕttt⊥ − µϕ2
t t − ϕsst⊥ + Nϕ2

s t = Nsst + 2Nsϕs t⊥,

wheret⊥(s, t) := i cosϕ(s, t)−k sinϕ(s, t). Projecting the latter equation onto the local longitudinal and transversal
direction, respectively, yields

−µϕ2
t + Nϕ2

s = Nss, (13a)

µϕtt − Nϕss = 2Nsϕs. (13b)
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Eq. (13b) constitutes a wave equation forϕ describing the propagation of transversal waves. Eq. (13a) which we
consider a relation determining the tensionN clearly is a copy of (11). By analogously projecting (4), the initial
conditions for (13a) and (13b) take the form

ϕ(s,0) = ϕ̄(s) := arccos(r̄′(s) · k) and ϕt (s,0) = ω̄(s) := v̄′(s) · (i cosϕ̄(s) − k sinϕ̄(s)). (14)

Of course, the initial values ofN have to satisfy the compatibility condition (12) withκ̄ = ϕ̄′.

3. Propagation of small transversal waves

A straightforward calculation shows that the onlystationary solutions (i.e. those not depending ont) of (3) and
(10) are given by planar catenary curves [1]. In light of the string pendulum problem sketched in Section 1, we
content ourselves with the special caset(s, t) = t0 = const. and consequentlyNss(s, t) = 0, thereby postponing
the more general situation to further investigations. Here we thus regard the straight configurationt0 = k (or,
equivalently,ϕ0 ≡ 0) with N0(s) = c0 − d0s as the reference state of a perturbation analysis. More specifically,
we consider the effect of the small planar perturbationsϕ(s,0) = ϕ̄(s) = εϕ̄1(s), ϕt (s,0) = ω̄(s) = εω̄1(s) with
ε > 0 denoting a small parameter. Taking as an ansatz the asymptotic expansion [5]

N(s, t) = N0(s) +
n∑

i=1

εiNi(s, t) + O(εn+1), ϕ(s, t) =
n∑

i=1

εiϕi(s, t) + O(εn+1), (15)

inserting it into (13a) and collecting powers ofε, we obtain

n∑
i=1

εiNi,ss =
n∑

i=1

εi+1

(
N0

i∑
k=1

ϕk,sϕi−k+1,s + ε

i∑
k=1

Nk

i−k+1∑
l=1

ϕl,sϕi−k−l+2,s

)

−µ

n∑
i=1

εi+1
i∑

k=1

ϕk,tϕi−k+1,t + O(εn+1)

asε → 0. By balancing powers ofε, we arrive at

O(ε) : N1,ss = 0, (16a)

O(ε2) : N2,ss = N0ϕ
2
1,s − µϕ2

1,t , (16b)

O(εi) : Ni,ss =
i−1∑
k=1

(N0ϕk,sϕi−k,s − µϕk,tϕi−k,t ) +
i−2∑
k=1

Nk

i−k−1∑
l=1

ϕl,sϕi−k−l,s (16c)

for i = 3, . . . , n. In an analogous manner, (13b) leads to

µ

n∑
i=1

εiϕi,tt −
n∑

i=1

εi

(
N0ϕi,ss + ε

i∑
k=1

Nkϕi−k+1,ss

)
= 2

n∑
i=1

εi

(
N0,sϕi,s +

i∑
k=1

Nk,sϕi−k+1,s

)
+ O(εn+1)

asε → 0; from this we deduce for the individual orders ofε

O(ε) : µϕ1,tt − N0ϕ1,ss = 2N0,sϕ1,s , (17a)

O(εi) : µϕi,tt − N0ϕi,ss = 2N0,sϕi,s +
i−1∑
k=1

(2Nk,sϕi−k,s + Nkϕi−k,ss) (17b)
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for i = 2, . . . , n. By means of (15), the initial conditions (14) take the form

n∑
i=1

εiϕi(s,0) + O(εn+1) = εϕ̄1(s), (18a)

n∑
i=1

εiϕi,t (s,0) + O(εn+1) = εω̄1(s). (18b)

Equating coefficients ofε1 gives the initial conditions corresponding to (17a)

O(ε) : ϕ1(s,0) = ϕ̄1(s) and ϕ1,t (s,0) = ω̄1(s). (19a)

SinceN0(s) = c0 −d0s is already known,ϕ1 may be calculated from (17a), and in turnN2 follows from integrating
(16b) twice. But thenϕ2 is the only unknown quantity in (17b) withi = 2, and the procedure may be repeated. By
consequently inserting into (16c) and (17b), each term in the expansion (15) may be determined. By virtue of (18a)
and (18b), all the equations (17b) have to be solved under homogenous initial conditions

O(εi) : ϕi(s,0) = 0 and ϕi,t (s,0) = 0 (19b)

imposed fori = 2, . . . , n. Contrary to (17a), the dynamics ofϕi for i = 2, . . . , n is exclusively due to a forcing
termei , which only depends on quantities calculated earlier,

µϕi,tt − (c0 − d0s)ϕi,ss = −2d0ϕi,s + ei, (20)

and clearlye1 = 0.

3.1. Representation of solutions

The differential equations (17a) and (20) only differ by their inhomogeneity. Furthermore, they all are of the same
type, which is determined by the tension in the unperturbed equilibrium. IfN0(s) = c0 − d0s < 0, these equations
are elliptic, implying that there is no wave propagation at all. In the sequel, we shall thus assume thatc0 − d0s > 0.
If d0 > 0, then equations (20) are hyperbolic ons ∈ (−∞, c0/d0). Without loss of generality we subsequently
focus ond0 ≥ 0.

The cased0 = 0 is somewhat special, so we deal with it separately. From a physical point of view, this situation
may be interpreted as describing a light string with a heavy mass attached to its end. (We shall discuss this topic in
more detail when dealing with various boundary conditions in [7].) By scaling time according toτ := t (c0/µ)

1/2,
we obtain from (20):

Φi,ττ − Φi,ss = Ei, (21)

a family of wave equations forΦi(s, τ ) := ϕi(s, τ (µ/c0)
1/2), whereEi(s, τ ) := (1/c0)ei (s, τ (µ/c0)

1/2). Taking
into account the initial conditions (19a) and (19b),

Φ1(s,0) = ϕ̄(s) =: Φ̄1(s) and Φ1,τ (s,0) =
(
µ

c0

)1/2

ω̄(s) =: Ω̄1(s) (22)

andΦi(s,0) = 0, Φi,τ (s,0) = 0 for i ≥ 2 as well asE1 = 0, we arrive at the well-known solution (attributed to
d’Alembert)

Φ1(s, τ ) = 1

2

{
Φ̄1(s + τ) + Φ̄1(s − τ) +

∫ s+τ

s−τ

Ω̄1(x)dx

}
, (23)
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and fori ≥ 2 [12],

Φi(s, τ ) = 1

2

∫ τ

0

∫ s+τ−y

s−τ+y

Ei(x, y)dx dy. (24)

In particular, the choice of̄Ω1(s) = ±Φ̄ ′
1(s) as the initial conditions forcesΦ1 to be constant along the straight

linesz(s, τ ) = s ± τ − a = 0, wherea denotes an arbitrary number. According to (9) withN = N0 = c0, these
lines are the characteristics of (21).

We now turn towards the cased0 > 0; hered0/µ is the only quantity of physical relevance (whereasc0 merely shifts
the origin of the coordinates), and so we scale time byτ := t (d0/µ)

1/2. Furthermore, the new spatial coordinate
σ := c0/d0 − s equals zero exactly where the tensionN0 vanishes. We thus obtain the transformed equations

Φi,ττ − σΦi,σσ = 2Φi,σ + Ei for (σ, τ ) ∈ (0,∞) × (0,∞), (25a)

where analogouslyΦi(σ, τ ) := ϕi(c0/d0−σ, τ(µ/d0)
1/2)as well asEi(σ, τ ) := (1/d0)ei (σ−c0/d0, τ (µ/d0)

1/2).
The initial conditions fori = 1 now read

Φ1(σ,0) = ϕ̄1

(
c0

d0
− σ

)
=: Φ̄1(σ ) and Φ1,τ (σ,0) =

(
µ

d0

)1/2

ω̄1

(
c0

d0
− σ

)
=: Ω̄1(σ ), (25b)

while for i ≥ 2, we have vanishing initial data

Φi(σ,0) = 0 = Φ̄i(σ ) and Φi,τ (σ,0) = 0 = Ω̄i(σ ). (25c)

One could solve all these equations by means of series of Bessel functions of first and second kind,(1/
√
σ)J1(2ν

√
σ)

and(1/
√
σ)Y1(2ν

√
σ); as long as no boundary conditions have been specified, the eigenvaluesν remain undeter-

mined. Such an analysis of eigenmodes is in fact a classical topic [4]. Since it does not directly make transparent
the properties of propagating waves, we shall, however, not pursue this approach but rather derive an expression for
the solutions of (25a) which imitates d’Alembert’s representation (23). To this end, we observe that the solutions of

z2
τ − σz2

σ = (zτ − √
σzσ )(zτ + √

σzσ ) = 0

may be written asz(σ, τ ) = 2
√
σ±τ−2

√
AwithA denoting a positive number. The characteristics of (25a), implic-

itly given byz(σ, τ ) = 0, are easily seen to be parabolas in the(σ, τ )-plane parametrized byτ , they may be written as

σ = σ0(τ ) = 1
4(2

√
A ∓ τ)2, (26)

which simply is the solution of (9) withN = N0 = d0σ (Fig. 6) . By settingx := 2
√
σ andy := τ as well as

ui(x, y) := Φi(
1
4x

2, y), the set of equations (25a) is transformed to the so-calledsecond normal form [12]:

ui,yy − ui,xx − 3

x
ui,x = Ei

(
1

4
x2, y

)
for (x, y) ∈ (0,∞) × (0,∞). (27)

The characteristics of (27) are given by straight lines in the(x, y)-plane. We shall now discuss (27) by means of a
Riemann function. To this end, we observe that the adjoint differential operator ofL[u] := uyy − uxx − (3/x)ux is
given byM[v] := vyy − vxx + (3/x)vx , more formally

vL[u] − uM[v] =
(
(vu)x −

(
2vx − 3

x
v

)
u

)
x

− ((vu)y − 2vyu)y =: rot(K, J ). (28)

Integrating the latter relation over the triangleD = [MPQ] formed by characteristics (cf. Fig. 7) , we find by virtue
of Green’s theorem∫ ∫

D

(vL[u] − uM[v])dx dy =
∫ P

M
(K dx + J dy) +

∫ Q

P
K dx +

∫ M

Q
(K dx + J dy).
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Fig. 6. Characteristics of the equilibrium configuration.

Fixing parametersξ, η with ξ > η, we define the functionv = v(x, y; ξ, η) as the unique solution of the boundary
value problem

vyy − vxx +
(

3

x
v

)
x

= 0 on D = [MPQ], (29a)

v =
(
x

ξ

)3/2

if (x, y) ∈ PM ∪ MQ. (29b)

Fig. 7. The domain of integration being transformed to a part of a unit triangle.
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Following [12], we callv theRiemann function associated with (27). We point out thatv is equally referred to as
Green function throughout the literature; in the light of the forthcoming paper [7], however, we prefer the former
notion.

SinceM[v] = 0, the solution of (27) may be written as

ui(ξ, η)= 1

2

{
ui(ξ + η,0) v(ξ + η,0; ξ, η) + ui(ξ − η,0)v(ξ − η,0; ξ, η)

+
∫ ξ+η

ξ−η

[ui,y(x,0) v(x,0; ξ, η) − ui(x,0)vy(x,0; ξ, η)] dx

−
∫ η

0

∫ ξ+η−y

ξ−η+y

Ei

(
1

4
x2, y

)
v(x, y; ξ, η)dx dy

}
. (30)

From the initial data according to (25b) and (25c) we obtain
ui(x,0) = Φ̄i(

1
4x

2) =: ūi (x) and ui,y(x,0) = Ω̄i(
1
4x

2) =: w̄i(x). (31)

By means of (30), the solutionsΦi(σ, τ ) = ui(2
√
σ , τ) of the original problems (25a)–(25c) may be given the

representation we were after. For the first order solution, we find

Φ1(σ, τ )= 1

2

{
Φ̄1

(
1

4
(2

√
σ + τ)2

)(
2
√
σ + τ

2
√
σ

)3/2

+ Φ̄1

(
1

4
(2

√
σ − τ)2

)(
2
√
σ − τ

2
√
σ

)3/2

+
∫ 2

√
σ+τ

2
√
σ−τ

[
Ω̄1

(
1

4
x2
)
v(x,0; 2

√
σ , τ) − Φ̄1

(
1

4
x2
)
vy(x,0; 2

√
σ , τ)

]
dx

}
(32)

whereas due to trivial initial data,

Φi(σ, τ ) = −1

2

∫ τ

0

∫ 2
√
σ+τ−y

2
√
σ−τ+y

Ei

(
1

4
x2, y

)
v(x, y; 2

√
σ , τ)dx dy for i = 2, . . . , n.

One should compare the latter formulas to (23): in case of constantN0 the Riemann function corresponding to (21)
identically equals 1 and thus (23) may be considered as an analog of (32).

By its very definition, the Riemann function also depends on the parameter(ξ, η). Nevertheless, it suffices to solve
the boundary value problem (29a) and (29b) once, because the different Riemann functions may be transformed to
a standard form. To this end, we shall use the notation∆δ := {(p, q) : 0 < |p| < q < δ}. It is easily seen that (29a)
and (29b) can be given the normalized form

v∗
qq − v∗

pp −
(

3

1 − p
v∗
)
p

= 0 for (p, q) ∈ ∆η/ξ ⊂ ∆1, (33a)

v∗ = (1 − p)3/2 if p = ±q (33b)

by means of the transformation of coordinates(p, q) := ((ξ − x)/ξ, (η − y)/ξ), where, accordingly,v∗(p, q) :=
v(ξ(1 − p), η − ξq; ξ, η). As suggested by this notation, we shall henceforth considerv∗ a function on∆1 which
does actually not depend on the parameter (cf. Fig. 7). Oncev∗ is known, the value ofv for arbitrary(ξ, η) is given
by v(x, y; ξ, η) = v∗((ξ − x)/ξ, (η − y)/ξ).

The original differential equations (13a) and (13b) subject to the initial conditions (14) has thus been reduced to
finding solutions of the boundary value problem (33a) and (33b). Any analytical solution of the latter would clearly
give rise to an analytical solution of the former, which we already know to be rather unintuitive. For the purpose of
the present calculations, it is much more sensible to use a sufficiently accurate numerical version of the normalized
Riemann functionv∗.

Let us point out that such a numerical solution may easily be provided. Covering the domain of integration by a
grid with widthh = 1/n and discretizing (33a) by means of central difference quotients at(p, q) = (ih, (k + 1)h),
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Fig. 8. The normalized Riemann functionv∗ calculated numerically on a grid with widthh = 1/n.

we are led to the recursion formula

v∗
i,k+2 = (1 − 3

2(n − i − 1)−1)v∗
i+1,k+1 + (1 − 3

2(n − i + 1)−1)v∗
i−1,k+1 − v∗

i,k, (34)

wherek = 0, . . . , n, i = −k, . . . , k andv∗
i,k := v∗(ih, kh). At the boundaryi = ±k, we havev∗

i,k = (1 − ih)3/2.
From the recursion formula (34) and the boundary data, the approximate valuesv∗

i,k of the normalized Riemann
function may be calculated for every second point of the grid (see Fig. 8).

3.2. First order approximation

It has been mentioned before that the characteristics are all the same for the differential equations (20) coming
from the perturbation analysis. These characteristics follow from the static solutionN0 = c0−d0s = d0σ . However,
they must not be regarded as the characteristics of the original problem (13a) and (13b) which are obtained from
the ordinary differential equations (9) by means of (15). Due to (16a) the tension is linear also on first order, i.e.
N1(s, t) = c1(t) − d1(t)s for which we writeN1(σ, τ ) = d0(C1(τ ) + D1(τ )σ ) with respect to the transformed
coordinatesσ andτ . Expanding (9), we then obtain

±σ̇c = √
σc + C1(τ ) + D1(τ )σc

2
√
σc

ε + O(ε2) (35)

asε → 0. In order to compare the characteristics of the static problem, i.e. (26), to those of the full problem, we
also write the latter in form of an asymptotic expansion, i.e.σc(τ ) = σ0(τ )+ σ1(τ )ε + O(ε2). Equating powers of
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Fig. 9. The evolution ofϕ due to a small perturbation according to the special initial condition (38).

ε, we rediscover on order O(1) the parabolas (26). However, there is a first order correction term given by1

σ1(τ ) = ±
∫ τ

0

2
√
A ± τ

(2
√
A ± y)2

[
C1(y) + 1

4
D1(y)(2

√
A ± y)2

]
dy. (36)

Recall that in the case of constant tension the specific choice of initial conditionsΩ̄1 = ±Φ̄ ′
1 made the integral

in (23) disappear. One could therefore try to analogously make the corresponding terms vanish in (30) or (32).
More precisely, one could tentatively setw̄1(x) = ±ū′

1(x) in (30) or equivalentlyΩ̄1(σ ) = ±√
σΦ̄ ′

1(σ ) in (30).
According to (35) characteristics differ froṁσc = ±√

σc already on first order. As a consequence, we merely find

u1(ξ, η) = ū1(ξ ± η,0) v∗
(

±η

ξ
,
η

ξ

)
± 1

2

∫ ξ+η

ξ−η

ū1(x)

[
v∗
p

(
1 − x

ξ
,
η

ξ

)
± v∗

q

(
1 − x

ξ
,
η

ξ

)]
dx

ξ
(37)

here. Not only does the integral term (considerably) contribute tou1 for largeη, but there is a certain effect for
smallη too: From (33b) it is easily seen thatv∗

p(0,0)± v∗
q(0,0) = −3

2 and therefore the integral term behaves like

−(3/ξ)ū1(ξ)η + O(η2) asη → 0. Neglecting the integral in (37) may thus be justified for smallη if the initial
velocity is chosen according to

±w̄1(x) = ū′
1(x) + 3

2x
ū1(x) or ± Ω̄1(σ ) = √

σΦ̄ ′
1(σ ) + 3

4
√
σ
Φ̄1(σ ). (38)

In this special case, the first term on the right-hand side of (37) remains unchanged while the integrand vanishes at
η = 0. Going back to the original coordinatesσ = 1

4x
2 andτ = η, we thus find

Φ1(σ, τ ) = Φ̄1

(
1

4
(2

√
σ ± τ)2

)(
2
√
σ ± τ

2
√
σ

)3/2

+ O(τ2).

1 Here and in the sequel, equations containing± (or ∓) should be read as two individual equations exclusively containing the upper or lower
signs, respectively.
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Along the characteristic (26), the latter relation simply reads

Φ1(σ0(τ ), τ ) = Φ̄1(A)

(
2
√
A

2
√
A ∓ τ

)3/2

+ O(τ2). (39)

As can be seen from Fig. 9, the approximations outlined above agree quite well with the numerical solutions of the
full problem. Especially, the initial conditions (38) give rise to nearly “clean” waves propagating in one direction.

4. Conclusions

Wave propagation in inextensible strings results from (locally) purely transversal motions and is completely
determined by the rotation of the local tangents (cf. Fig. 4). The characteristic velocity (9) solely depends upon the
local value of the tensionN . Due to inextensibility,N may be calculated from the tangents’ motion alone: at any
fixed time it obeys the ordinary differential equation (11).

A string pendulum subject to homogenous gravitationg not only provides a simple example for the methods
discussed in the present work but also is suited for practical experiments. For the vertical equilibrium, the tension
is easily seen to beN0(s) = (m + l − s)µg. (Here the arc-lengths is measured from the point of suspension;
the quantitiesl, lµ andmµ denote the string’s length, its total mass, and the mass attached at the string’s end,
respectively.) According to (26), the characteristics passing throughs = a at t = 0 are given by the parabolas

s0(t) = m + l − 1

4
(2

√
m + l − a ∓ t

√
g)2. (40)

When slightly perturbing this equilibrium state by changing the angles and angular velocities of the local tangents
to ϕ(s,0) = εϕ̄1(s) andϕt (s,0) = εω̄1(s), respectively, the characteristics diverge from (40) even on first order
(of ε). Nevertheless, by means of (38), it turns out that the special choice of initial conditions

∓ω̄(s) =
√
g(m + l − s)ϕ̄′(s) + 3g

4
√
g(m + l − s)

ϕ̄(s) (41)

gives rise to waves wandering almost exclusively towards the endmass (minus sign) and the point of suspension
(plus sign), respectively. As a consequence of (39), initially

ϕ(s0(t), t) ≈ ϕ(a,0)

(
2
√
m + l − a

2
√
m + l − a ∓ t

√
g

)3/2

(42)

holds. Having an eye on d’Alembert’s solution of the classical wave equation with constant coefficients, one could
possibly have guessed the first term on the right-hand side of (41); the corresponding velocity follows from the
characteristic equationµṡ2

0(0) = N0(a) = (m+ l−a)µg. The second term in (41) however is not revealed without
a thorough discussion of the representation (32).

Summarizing we may thus say that by (42) characteristics of the reference state may be interpreted as paths of
small local perturbations. These characteristics are quite accurately traced by small waves even after reflections (see
Fig. 5 and [7]). We regard this observation as retrospectively giving support to our perturbation analysis. After all, an
important feature of (17a) and (17b) is the sole emergence of characteristics of the reference state. As a consequence
of (36), the characteristics (9) of the full problem diverge from the latter even on first order and seemingly admit no
evident physical interpretation in the present context.

According to (42), a wave travelling towards a region of higher tension accelerates as|s̈0(t)| = 1
2g, thereby

shrinking in amplitude like(1 + const. t)−3/2. Conversely, waves travelling towards regions of lower tension slow
down and simultaneously become bigger according to(1− const. t)−3/2. A physical interpretation of this behavior
might be as follows: Since the slope of characteristics increases with increasing tension, the distance between
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characteristics grows towards the fixed end and shrinks towards the free end. Assuming an energy-like quantity to
be conserved, travelling waves plausibly have to decrease (increase) in amplitude because they are supported on
growing (shrinking) domains.

The exponent32 in (42)) originates from the affine statical tension profile. As indicated by (16a) an affine law may
hold for the tension even on higher orders. This fact is quite well confirmed by numerical simulations (see Fig. 3):
Following a short period of fluctuations due to the splitting of the initial configuration, the statical tension profile
may be found with high accuracy between the two propagating waves. This clear period however is drastically
terminated as soon as the free end is reached by the perturbation wave: Oscillations and even shock-like structures
in the tension profile can be observed (see Fig. 3). When looking at Figs. 2 and 3, several questions concerning the
reflection of propagating waves naturally arise. After all, Fig. 2 suggests that the reflected waves are considerably
distorted. A careful discussion of these issues will be accomplished in [7]: There the purely uni-directional waves
(42) are going to prove very helpful because they show the reflection of a single wave in a lucid manner (see Fig. 9).
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