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Abstract
This article provides a concise overview of the main mathematical theory of Ben-
ford’s law in a form accessible to scientists and students who have had first courses
in calculus and probability. In particular, one of the main objectives here is to aid
researchers who are interested in applying Benford’s law, and need to understand
general principles clarifying when to expect the appearance of Benford’s law in
real-life data and when not to expect it. A second main target audience is students of
statistics or mathematics, at all levels, who are curious about the mathematics
underlying this surprising and robust phenomenon, and may wish to delve more
deeply into the subject. This survey of the fundamental principles behind Benford’s
law includes many basic examples and theorems, but does not include the proofs or
the most general statements of the theorems; rather it provides precise references
where both may be found.

Keywords Benford’s law ! Significant ! Scale invariance ! Base invariance ! Random
probability measure

1 Introduction

Applications of the well-known statistical phenomenon called Benford’s law, or
first-digit law, have been increasing dramatically in recent years. The online
Benford database Berger et al. (2009), for example, shows over 800 new entries in
the past decade alone. At the Cross-domain Conference on Benford’s Law
Applications hosted by the Joint Research Centre of the European Commission in
Stresa, Italy in July 2019, organizers and participants both expressed a need for a
readily available and relatively non-technical summary of the mathematics
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underlying Benford’s law. This article is an attempt to satisfy that request. As such,
this overview of the mathematics of Benford’s Law is formulated without relying on
more advanced concepts from such mathematical fields as measure theory and
complex analysis.

The topic of Benford’s law has a rich and fascinating history. First recorded in
the 19th century (Newcomb 1881), it is now experiencing a wide variety of
applications including detection of tax and voting fraud, analysis of digital images,
and identification of anomalies in medical, physical, and macroeconomic data,
among others. The interested reader is referred to Berger and Hill (2015); Miller
(2015); Nigrini (2012) for more extensive details on the history and applications of
Benford’s law.

It is our hope that the present Benford primer will be useful for two groups of
readers in particular: First, researchers who are interested in applying Benford’s
law, and need to understand general principles clarifying when to expect the
appearance of Benford’s law in real-life data, and when not to expect it; and second,
science students at both the undergraduate and graduate levels who are curious
about the mathematical basis for this surprising phenomenon, and may wish to delve
more deeply into the subject and perhaps even try their hands at solving some of the
open problems.

This survey includes special cases of most of the main Benford theorems, and
many concrete examples, but does not include proofs or the most general statements
of the theorems, most of which may be found as indicated in Berger and Hill (2015).
The structure of the article is as follows: Sect. 2 contains the notation and
definitions; Sect. 3 the basic properties that characterize Benford behavior; Sect. 4
the Benford properties of sequences of constants; Sect. 5 the Benford properties of
sequences of random variables; and Sect. 6 a brief discussion of four common
errors.

2 Basic notation and definitions

In this survey, the emphasis is on decimal representations of numbers, the classical
setting of Benford’s law, so here and throughout log t means log10 t, and all digits
are decimal digits. For other bases such as binary or hexadecimal, analogous results
hold with very little change, simply by replacing log with logb for the appropriate
base b; the interested reader is referred to (Berger and Hill 2015, p. 9) for details.

Here and throughout, N ¼ f1; 2; 3; . . .g denotes the positive integers (or natural
numbers), Z ¼ f. . .;#2;#1; 0; 1; 2; . . .g the integers, R ¼ ð#1;1Þ the real

numbers, and Rþ ¼ ð0;1Þ the positive real numbers. For real numbers a and b,
[a, b) denotes the set (in fact, half-open interval) of all x 2 R with a' x\b;
similarly for (a, b], (a, b), [a, b]. Every real number x can be expressed uniquely as
x ¼ bxcþ hxi, where bxc and hxi denote the integer part and the fractional part of x,
respectively. Formally, bxc ¼ maxfk 2 Z : k' xg and hxi ¼ x# bxc. For example,
b2c ¼ 2 and h2i ¼ 0, whereas b10pc ¼ b31:4. . .c ¼ 31 and h10pi ¼ 0:415. . ..

123

A. Berger, T. P. Hill

Author's personal copy



The basic notion underlying Benford’s law concerns the leading significant digits
and, more generally, the significand of a number (also sometimes referred to as the
mantissa in scientific notation).

Definition 1 For x 2 Rþ, the (decimal) significand of x, denoted S(x), is given by

SðxÞ ¼ t, where t is the unique number in [1, 10) with x ¼ 10kt for some
(necessarily unique) k 2 Z. For negative x, SðxÞ ¼ Sð#xÞ, and for convenience,
Sð0Þ ¼ 0.

Example 2 Sð2019Þ ¼ 2:019 ¼ Sð0:02019Þ ¼ Sð#20:19Þ.

Definition 3 The first (decimal) significant digit of x 2 R, denoted D1ðxÞ, is the first
(left-most) digit of S(x), where by convention the terminating decimal represen-
tation is used if S(x) has two decimal representations. Similarly, D2ðxÞ denotes the
second digit of S(x), D3ðxÞ the third digit of S(x), and so on. (Note that Dnð0Þ ¼ 0
for all n 2 N.)

Example 4 D1ð2019Þ ¼ D1ð0:02019Þ ¼ D1ð#20:19Þ ¼ 2, D2ð2019Þ ¼ 0,
D3ð2019Þ ¼ 1, D4ð2019Þ ¼ 9, and Djð2019Þ ¼ 0 for all j( 5. Also, Dnð2019Þ¼
Dnð2018:9999. . .Þ for all n 2 N.

As will be seen next, the formal notions of a Benford sequence of numbers and a
Benford random variable are defined via the significands, or equivalently, via the
significant digits of the sequence and the random variable.

An infinite sequence of real numbers ðx1; x2; x3; . . .Þ is denoted by ðxnÞ; e.g.,
ð2nÞ ¼ ð2; 22; 23; . . .Þ ¼ ð2; 4; 8; . . .Þ. In the next definition, #A denotes the number
of elements of the set A; e.g., #f2; 0; 1; 9g ¼ 4.

Definition 5 A sequence of real numbers ðxnÞ is a Benford sequence, or Benford for
short, if for every t 2 ½1; 10Þ, the limiting proportion of xn’s with significand less
than or equal to t is exactly log t, i.e., if

limN!1
#f1' n'N : SðxnÞ' tg

N
¼ log t for all t 2 ½1; 10Þ:

Example 6 (1) The sequence of positive integers ðnÞ ¼ ð1; 2; 3; . . .Þ is not Benford,
since, for example, more than half the entries less than 2 ! 10m have first digit 1 for
every positive integer m, so the limiting proportion of entries with significand less
than or equal to 2, if it exists at all, cannot be log 2\0:5. Similarly, the sequence of
prime numbers ð2; 3; 5; 7; 11; . . .Þ is not Benford, but the demonstration of this fact
is deeper; see (Berger and Hill 2015, Example 4.17(v)).

(2) As will be seen in Example 15 below, the sequences ð2nÞ and ð3nÞ of powers
of 2 and 3 are Benford. Many other classical sequences including the Fibonacci
sequence ð1; 1; 2; 3; 5; . . .Þ and the sequence of factorials ðn!Þ ¼
ð1; 2; 6; 24; 120; . . .Þ are also Benford.

An equivalent description of a Benford sequence in terms of the limiting
proportions of values of its significant digits is as follows.
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Proposition 7 A sequence ðxnÞ of real numbers is Benford if and only if

limN!1
#f1' n'N : D1ðxnÞ ¼ d1;D2ðxnÞ ¼ d2; . . .;DmðxnÞ ¼ dmg

N

¼ log 1þ 1

10m#1d1 þ 10m#2d2 þ . . .þ dm

! "
;

for all m 2 N, all d1 2 f1; 2; . . .; 9g, and all dj 2 f0; 1; . . .; 9g, j( 2.

Example 8 Proposition 7 with m ¼ 1 yields the well-known first-digit law: For
every Benford sequence of real numbers ðxnÞ,

limN!1
#f1' n'N : D1ðxnÞ ¼ dg

N
¼ log 1þ 1

d

! "
for all d 2f1; 2; . . .; 9g:

The notion of a Benford random variable (or dataset) is essentially the same as
that of a Benford sequence, with the limiting proportion of entries replaced by the
probability of the random values.

Definition 9 A (real-valued) random variable X is Benford if

PðSðXÞ' tÞ ¼ log t for all t 2 ½1; 10Þ:

Recall that a random variable U is said to be uniformly distributed on [0, 1] if
PðU' sÞ ¼ s for all s 2 ½0; 1*.

Example 10 Let U be uniformly distributed on [0, 1].

(1) U is not Benford, since as is easy to check, PðSðUÞ' 2Þ ¼ 1
9\ log 2.

(2) X ¼ 10U is Benford, since SðXÞ ¼ X, and PðSðXÞ' tÞ ¼ PðX' tÞ ¼
Pð10U ' tÞ ¼ PðU' log tÞ ¼ log t for all t 2 ½1; 10Þ. In fact, this construction
provides an excellent way of generating random data that follows Benford’s
law on a digital computer: Use any standard program to generate U, and then
raise 10 to that power.

The analogous definition of a Benford random variable in terms of significant
digits follows similarly.

Proposition 11 A random variable X is Benford if and only if

P
#
D1ðXÞ ¼ d1;D2ðXÞ ¼ d2; . . .;DmðXÞ ¼ dm

$

¼ log 1þ 1

10m#1d1 þ 10m#2d2 þ . . .þ dm

! "
;

for all m 2 N, all d1 2 f1; 2; . . .; 9g, and all dj 2 f0; 1; . . .; 9g, j( 2.
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Example 12 If X is a Benford random variable, then the probability that X has the
same first three digits as p ¼ 3:1415. . . is

P
#
D1ðXÞ ¼ 3;D2ðXÞ ¼ 1;D3ðXÞ ¼ 4

$
¼ log 1þ 1

102 ! 3þ 10 ! 1þ 4

! "

¼ log
315

314
+ 0:00138:

None of the classical random variables are Benford exactly, although some are
close for certain values of their parameters. For example, no uniform, exponential,
normal, or Pareto random variable is Benford exactly, but Pareto and log normal
random variables, among others, can be arbitrarily close to being Benford
depending on the values of their parameters.

3 What properties characterize Benford sequences and random
variables?

The purpose of this section is to exhibit several fundamental and useful results
concerning Benford sequences and random variables. These include three basic
properties of a sequence of constants or a random variable that are equivalent to it
being Benford:

(1) the fractional parts of its decimal logarithm are uniformly distributed between
0 and 1;

(2) the distribution of its significant digits is invariant under changes of scale; and
(3) the distribution of its significant digits is continuous and invariant under

changes of base.

Analogous definitions and results also hold for Benford functions, for which the
interested reader is referred to (Berger and Hill 2015, Sect. 3.2).

An additional feature demonstrating the robustness of Benford’s law is that if a
Benford random variable is multiplied by any independent positive random
variable, then the product is Benford as well.

Recall that a sequence of real numbers ðxnÞ ¼ ðx1; x2; x3; . . .Þ is uniformly
distributed modulo one (or mod 1, for short) if

limN!1
#f1' n'N : hxni' sg

N
¼ s for all s 2 ½0; 1*;

e.g., in the limit, exactly half of the fractional parts hxni are less than or equal to 1
2,

and exactly one third are less than or equal to 1
3. The next lemma is a classical

equidistribution theorem of Weyl, and, as will be seen, is a powerful tool in Benford
theory.

Lemma 13 The sequence ðnaÞ ¼ ða; 2a; 3a; . . .Þ is uniformly distributed mod 1 if
and only if a is irrational.
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Proof See (Berger and Hill 2015, Proposition 4.6). h

The application of Lemma 13 to the theory of Benford’s law is evident from the
following basic characterization of Benford sequences. (Here and throughout let
log 0 ¼ 0 for convenience.)

Theorem 14 A sequence of real numbers ðxnÞ is Benford if and only if the sequence
ðlog jxnjÞ¼ðlog jx1j; log jx2j; log jx3j; . . .Þ is uniformly distributed mod 1.

Proof See (Berger and Hill 2015, Theorem 4.2). h

Example 15 (1) The sequence ð2nÞ of powers of 2 is Benford. This follows by
Theorem 14 and Lemma 13 since ðlog 2nÞ ¼ ðn log 2Þ and since log 2 is irrational.
Similarly, the sequences ð3nÞ and ð5nÞ of powers of 3 and 5, respectively, are
Benford.

(2) The sequence ð10nÞ is not Benford, nor is
#
10n=2

$
¼

# ffiffiffiffiffi
10

p
; 10; 10

ffiffiffiffiffi
10

p
; . . .

$
,

since hlog 10n=2i ¼ hn2i ¼ 0 or 1
2 for every n, so

#
log 10n=2

$
is not uniformly

distributed mod 1.

The following characterization of Benford random variables is a direct analogue
of Theorem 14.

Theorem 16 A random variable X is Benford if and only if the random variable
hlog jXji is uniformly distributed on [0, 1].

Proof See (Berger and Hill 2015, Theorem 4.2). h

The next proposition shows that if a sequence of numbers or a random variable
are Benford, then so are the positive multiples of the sequence or random variable,
as are their powers and reciprocals.

Proposition 17 If the sequence of numbers ðxnÞ is Benford, and if the random

variable X is Benford, then for every a[ 0 and 0 6¼ k 2 Z, the sequence ðaxknÞ and
the random variable ðaXkÞ are also Benford.

Proof Special case of (Berger and Hill 2015, Theorem 4.4). h

Example 18 (1) Since ð2nÞ is Benford, the sequences ð4nÞ ¼ ð4; 16; 64; . . .Þ,
ð2#nÞ ¼ ð12 ;

1
4 ;

1
8 ; . . .Þ, and ð2npÞ ¼ ð2p; 4p; 8p; . . .Þ are also Benford.

(2) Since X ¼ 10U is Benford, so are X2 ¼ 100U ; 1=X ¼ 10#U , and pX ¼ p10U .

The next theorem says that if a Benford random variable is multiplied by any
positive constant, e.g., as a result of changing units of measurement, then the
significant digit probabilities will not change. In fact Benford random variables are
the only random variables with this property. Recall that two random variables X
and Y are identically distributed if PðX' tÞ ¼ PðY ' tÞ for all t 2 R.

Definition 19 A random variable X has scale-invariant significant digits if S(X) and

S(aX) are identically distributed for all a 2 Rþ.

Example 20 Let U be uniformly distributed on [0, 1].
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(1) U does not have scale-invariant digits since, for example, PðSðUÞ' 2Þ ¼ 1
9

but PðSð2UÞ' 2Þ ¼ 5
9.

(2) As is easy to check directly, or follows immediately from the next theorem

and Example 10 above, the random variable X ¼ 10U has scale-invariant
significant digits.

Theorem 21 A random variable X with PðX ¼ 0Þ ¼ 0 is Benford if and only if it
has scale-invariant significant digits.

Proof See (Berger and Hill 2015, Theorem 5.3). h

Example 22 By Theorem 21 and Example 10 above, if U is uniformly distributed
on [0, 1], then for every a[ 0 the random variable aU is not Benford, whereas the

random variable a10U is Benford.

In fact, a much weaker form of scale-invariance characterizes Benford’s law
completely, namely, scale-invariance of any single first digit.

Theorem 23 A random variable X with PðX ¼ 0Þ ¼ 0 is Benford if and only if for
some d 2 f1; 2; . . .; 9g,

PðD1ðaXÞ ¼ dÞ ¼ PðD1ðXÞ ¼ dÞ for all a 2 Rþ:

Proof See (Berger and Hill 2015, Theorem 5.8). h

Example 24 If X is a positive random variable, and the probability that the first

significant digit of aX equals 3 is the same for all a 2 Rþ, then X is Benford.

A notion parallel to that of scale-invariance is the notion of base-invariance, one
interpretation of which says that the distribution of the significant digits remains
unchanged if the base is changed from 10 to, say, 100.

Definition 25 A random variable X has base-invariant significant digits if S(X) and
SðXnÞ are identically distributed for all n 2 N.

Example 26 Let U be uniformly distributed on [0, 1].

(1) A short calculation (e.g., see (Berger and Hill 2015, Example 5.11(3))) shows
that U does not have base-invariant significant digits.

(2) A random variable Y with PðSðYÞ ¼ 1Þ ¼ 1 clearly has base-invariant
significant digits, as does any Benford random variable, which follows by a
short calculation; see (Berger and Hill 2015, Example 5.11(2)).

As seen in the last example, random variables whose significand equals 1 with
probability one, and Benford random variables both have base-invariant significant
digits. In fact, as the next theorem shows, averages of these two distributions are the
only such random variables.
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Theorem 27 A random variable Z with PðZ ¼ 0Þ ¼ 0 has base-invariant significant
digits if and only if Z ¼ ð1# qÞX þ qY for some q 2 ½0; 1*, where X is Benford and
PðSðYÞ ¼ 1Þ ¼ 1.

Proof See (Berger and Hill 2015, Theorem 5.13). h

Theorem 28 If a random variable has scale-invariant significant digits then it has
base-invariant significant digits.

Proof Follows immediately from Theorems 21 and 27. h

A consequence of Theorem 27 is that there are many base-invariant random
variables that are not Benford, but as the next corollary shows, all continuous
random variables that are base-invariant are also Benford. Recall that a random
variable X is continuous if there exists a function fX : R ! ½0;1Þ, the density
function of X, such that

PðX' tÞ ¼
Z t

#1
fXðxÞ dx for all t 2 R:

As the reader may notice, such a random variable X is often called absolutely
continuous in advanced texts, whereas the term continuous refers to the (weaker)
property that PðX ¼ tÞ ¼ 0 for all t 2 R. In keeping with the elementary nature of
this article, random variables that have the latter property but not the former (such
as, e.g., Cantor random variables (Berger and Hill 2015, Example 8.9)) are not
considered here, and continuous means absolutely continuous throughout. Many of
the most common and useful random variables are continuous, including uniform,
normal, and exponential random variables. Every Benford random variable is
continuous.

Corollary 29 A continuous random variable is Benford if and only if it has base-
invariant significant digits.

The final theorem in this section illustrates one of the key ‘‘attracting’’ properties
of Benford random variables, namely, if any random variable is multiplied by an
independent Benford random variable, then the product is Benford.

Theorem 30 Let X, Y be independent random variables with PðXY¼0Þ ¼ 0. If
either X or Y is Benford, then the product XY is also Benford.

Proof See (Berger and Hill 2015, Theorem 8.12). h

Corollary 31 Let X1;X2; . . . be independent positive random variables. If Xj is
Benford for some j 2 N, then the product X1X2 ! ! !Xm is Benford for all m( j.

4 What sequences of constants are Benford?

The goal of this section is to describe the Benford behavior of deterministic (that is,
non-random) sequences. The sequences described below will typically be increasing
(or decreasing) sequences of positive constants given by a rule that specifies the next
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entry in the sequence as a function of the previous entry (or several previous entries,
for example, as in the Fibonacci sequence). The most common examples are
iterations of a single function, i.e., where the same function is applied over and over
again. As will be seen here, three basic principles describe the Benford behavior of
such sequences:

(1) no polynomially increasing or decreasing sequence (or its reciprocals) is
Benford;

(2) almost every, but not every, exponentially increasing positive sequence is
Benford, and if it is Benford for one starting point, then it is Benford for all
starting points; and

(3) every super-exponentially increasing or decreasing positive sequence is
Benford for almost every, but not every, starting point.

To facilitate discussion of iterations of a function f : R ! R, the nth iterate of f is

denoted by f ½n*, so f ½1*ðxÞ ¼ f ðxÞ; f ½2*ðxÞ ¼ f
#
f ðxÞ

$
; f ½3*ðxÞ ¼ f

#
f
#
f ðxÞ

$$
, etc. Thus,#

f ½n*ðxÞ
$
denotes the infinite sequence of iterates of f starting at x, i.e.,

#
f ½n*ðxÞ

$
¼

&
f ðxÞ; f

#
f ðxÞ

$
; f
#
f
#
f ðxÞ

$$
; . . .

'
:

The next example illustrates sequences with the three types of growth mentioned
above.

Example 32

(1) Let f ðxÞ ¼ xþ 1. Then
#
f ½n*ðxÞ

$
¼ ðxþ 1; xþ 2; xþ 3; . . .Þ, so#

f ½n*ð1Þ
$
¼ ð2; 3; 4; . . .Þ, a polynomially (in fact, linearly) increasing

sequence.

(2) Let gðxÞ ¼ 2x. Then
#
g½n*ðxÞ

$
¼ ð2x; 4x; 8x; . . .Þ, so

#
g½n*ð1Þ

$
¼ ð2; 4; 8; . . .Þ

and
#
g½n*ð3Þ

$
¼ ð6; 12; 24; . . .Þ, both exponentially increasing sequences.

(3) Let hðxÞ ¼ x2. Then
#
h½n*ðxÞ

$
¼ ðx2; x4; x8; . . .Þ. Then

#
h½n*ð1Þ

$
¼ ð1; 1; 1; . . .Þ

is constant whereas
#
h½n*ð2Þ

$
¼ ð4; 16; 256; . . .Þ is a super-exponentially

increasing sequence.

Recall from Example 6(1) that the sequence of positive integers (n) is not
Benford. Thus by the scale-invariance characterization of Benford sequences in
Theorem 21 above, no arithmetic sequence ða; 2a; 3a; . . .Þ is Benford for any real
number a either. In fact, no polynomially increasing sequence, or the decreasing
sequence of its reciprocals, is Benford.

Proposition 33 The sequence ðanbÞ ¼ ða; a2b; a3b; . . .Þ is not Benford for any real
numbers a and b.

Proof See (Berger and Hill 2015, Example 4.7(ii)). h
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Example 34 The sequences ðn2Þ ¼ ð1; 4; 9; . . .Þ and ðn#2Þ ¼ ð1; 14 ;
1
9 ; . . .Þ are not

Benford.

Recall again that the sequence ð2nÞ is Benford. This also follows as a special case
from the next theorem, which deals with exponentially increasing sequences
generated by iterations of linear functions. Recall that a real number a is a rational

power of 10 if a ¼ 10m=k for some m; k 2 Z, k 6¼ 0. For example,
ffiffiffiffiffi
10

p
¼ 101=2 andffiffiffiffiffiffiffiffi

1003
p

¼ 102=3 are rational powers of 10, but 2 and p are not. As is easy to check, if
X is a continuous random variable, then PðX is a rational power of 10Þ ¼ 0.

Theorem 35 Let f ðxÞ ¼ axþ b for some real numbers a[ 1 and b( 0. Then for

every x[ 0 the sequence
#
f ½n*ðxÞ

$
is Benford if and only if a is not a rational power

of 10.

Proof See (Berger and Hill 2015, Theorem 6.13). h

Example 36

(1) Let f ðxÞ ¼ 2x. Since 2 is not a rational power of 10, the sequence
#
f ½n*ðxÞ

$
¼

ð2nxÞ is Benford for every x[ 0; in particular taking x ¼ 1 shows that ð2nÞ is
Benford. Similarly, letting gðxÞ ¼ 2xþ 1, the sequence

#
g½n*ðxÞ

$
¼ ð2xþ

1; 4xþ 3; 8xþ 7; . . .Þ is also Benford for every x[ 0.

(2) Let gðxÞ ¼
ffiffiffiffiffi
10

p
x. Since

ffiffiffiffiffi
10

p
¼ 101=2 is a rational power of 10, the sequence#

g½n*ðxÞ
$
¼ ð

ffiffiffiffiffi
10

p
x; 10x; 10

ffiffiffiffiffi
10

p
x; . . .Þ is not Benford for any x. In particular, if

x ¼ 1, the first significant digit of every entry in the sequence is either 1 or 3.

The Benford behavior of sequences generated by iterations of linear functions as
shown in Theorem 35, such as ðxnÞ where xnþ1 ¼ 2xn þ 1 for all n[ 1, has been
extended to various wider settings. One such setting is linear difference equations,
where the next entry in a sequence may depend linearly on several past entries, such
as the Fibonacci sequence ð1; 1; 2; 3; 5; . . .Þ where xnþ1 ¼ xn þ xn#1; see (Berger and
Hill 2015, Sect. 7.5).

As seen in Theorem 35 above, for exponentially increasing sequences generated
by iterations of linear functions, the resulting sequence is Benford or not Benford
depending on the coefficient of the leading term, and if it is Benford (or not
Benford) for one starting point x[ 0, then it is Benford (not Benford, respectively)
for all starting points x[ 0. As will be seen in the next theorem, this is in contrast to
the situation for super-exponentially increasing (or decreasing) functions, where the

Benford property of the sequence
#
f ½n*ðxÞ

$
does not depend on the coefficient of the

leading term, but does depend on the starting point x.

Theorem 37 Let f be any non-linear polynomial with f ðxÞ[ x for some real

number a and all x[ a. Then
#
f ½n*ðXÞ

$
is a Benford sequence with probability one

for every continuous random variable X with PðX[ aÞ ¼ 1, but there are infinitely

many x[ a for which
#
f ½n*ðxÞ

$
is not Benford.
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Proof See (Berger and Hill 2015, Theorem 6.23). h

Thus super-exponentially increasing sequences are Benford for almost all
starting points in the sense that if the starting point is selected at random according
to any continuous distribution on ½a;1Þ, then the resulting sequence is Benford with
probability one.

Example 38 (1) Let f ðxÞ ¼ x2 þ 1. Note that f ðxÞ[ x for all x, so in Theorem 37
the number a is arbitrary (or, more formally, one may take a ¼ #1). Thus there are

infinitely many x for which
#
f ½n*ðxÞ

$
is not Benford, but

#
f ½n*ðXÞ

$
is Benford with

probability one if X is continuous. However, in this example it is not easy to
determine exactly which starting points will yield Benford sequences. For instance,
it is unknown whether or not the sequence starting at 1, i.e.,#
f ½n*ð1Þ

$
¼ ð2; 5; 26; . . .Þ, is Benford; see (Berger and Hill 2015, Example 6.25).

(2) Let gðxÞ ¼ x2. Here Theorem 37 applies with a ¼ 1. Hence there are infinitely

many x[ 1 so that
#
g½n*ðxÞ

$
¼ ðx2; x4; x8; . . .Þ is not Benford (e.g.,

x ¼ 10; 100; 1000; . . .). Since g½n*ð1=xÞ ¼ 1=g½n*ðxÞ[ 0 for all n 2 N and x 6¼ 0, it
follows with Proposition 17 that if the starting point is selected at random via any

continuous random variable X, then
#
g½n*ðXÞ

$
¼ ðX2;X4;X8; . . .Þ is Benford with

probability one.

The results for iterations of functions above deal exclusively with repeated
application of the same function. As another example of the remarkable robustness
of Benford’s law, Benford sequences may also arise from the iterated application of
different functions. The next proposition, which follows easily from (Berger and
Hill 2015, Proposition 4.6(1)) and Theorem 14 above, provides an example of this
behavior.

Proposition 39 Let f1ðxÞ ¼ a1xþ b1 and f2ðxÞ ¼ a2xþ b2 for some real numbers
a1; a2 [ 1 and b1; b2 ( 0. Letting gnðxÞ ¼ f1ðxÞ if n is odd, and ¼ f2ðxÞ if n is even,

then for every x[ 0 the sequence
#
g½n*ðxÞ

$
¼

#
g1ðxÞ; g2

#
g1ðxÞ

$
; . . .

$
is Benford if

and only if a1a2 is not a rational power of 10.

Example 40 Alternating multiplication by 2 and by 3 yields a Benford sequence for
all starting points x[ 0. In particular starting at x ¼ 1, the sequence
ð2; 6; 12; 36; 72; . . .Þ is Benford.

In the last example, since iterations of each of the functions f1ðxÞ ¼ 2x and
f2ðxÞ ¼ 3x both lead to Benford sequences, it is perhaps not surprising that
alternating applications of them also leads to a Benford sequence for every starting
point x[ 0. Similarly, even if the selection of applying f1 or f2 is done at random by
flipping a fair coin at each step, the same conclusion holds (see Example 49 below).
More surprisingly perhaps, even in situations where f1 on its own would not
generate any Benford sequences at all, and is applied more than half the time, the

resulting sequence
#
g½n*ðxÞ

$
may still be Benford for most x[ 0.
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Example 41 Let f1ðxÞ ¼
ffiffiffi
x

p
and f2ðxÞ ¼ x3. Then

#
f
½n*
1 ðxÞ

$
is not a Benford

sequence for any x[ 0, since
#
f
½n*
1 ðxÞ

$
¼ ð

ffiffiffi
x

p
;

ffiffiffi
x4

p
;

ffiffiffi
x8

p
; . . .Þ converges to 1 as

n ! 1. By Theorem 37 and Proposition 17, on the other hand,
#
f
½n*
2 ðxÞ

$
is a

Benford sequence for almost all x[ 0. As shown in (Berger and Hill 2015, Ex-
ample 8.48), however, if the functions f1 and f2 are applied randomly and
independently at each step, with f1 applied no more than 61.3 percent of the time,
then almost all of the sequences generated are Benford.

5 What sequences of random variables are Benford?

The goal of this section is to identify several of the key Benford limiting properties
of sequences of random variables. These include the three basic facts that

(1) powers of every continuous random variable converge to Benford’s law;
(2) products of random samples from every continuous distribution converge to

Benford’s law; and
(3) if random samples are taken from random distributions that are chosen in an

unbiased way, then the combined sample converges to Benford’s law.

Here and throughout, i.i.d. stands for independent and identically distributed; by
definition, a random sample is a finite sequence X1;X2; . . .;Xn of i.i.d. random
variables.

Definition 42 An infinite sequence of random variables ðX1;X2;X3; . . .) converges
in distribution to Benford’s law if

limn!1 PðSðXnÞ' tÞ ¼ log t for all t 2 ½1; 10Þ;

and is Benford with probability one if

P
#
ðX1;X2;X3; . . .Þ is a Benford sequence

$
¼ 1:

In general, neither form of convergence implies the other, as the next example
shows.

Example 43

(1) Let X be a Benford random variable, and for each n 2 N, let Xn ¼ X. Then the
sequence ðXnÞ ¼ ðX;X;X; . . .Þ converges to Benford’s law in distribution,
since PðSðXnÞ' tÞ ¼ log t for all n and all t 2 ½1; 10Þ. But ðXnÞ is never a
Benford sequence, since no constant sequence is Benford.

(2) Let X be a random variable that is identically 2, and let Xn ¼ Xn for all n 2 N.
Then ðXnÞ ¼ ð2nÞ is Benford with probability one since ð2nÞ is a Benford
sequence. But for every n 2 N, Xn ¼ 2n is constant, which implies, for
example, that PðD1ðXnÞ ¼ 1Þ ¼ 0 or 1, and hence does not converge to the
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Benford probability log 2. Thus the sequence ðXnÞ does not converge in
distribution to Benford’s law.

(3) If X1;X2; . . . are i.i.d. random variables, then it is easy to see that the sequence
ðXnÞ converges in distribution to Benford’s law if and only if it is Benford
with probability one.

The next two theorems identify classical stochastic settings in which sequential
products of random variables converge in distribution to a Benford distribution,
even though none of the random variables in the product need be close to Benford at
all.

Theorem 44 If X is a continuous random variable, then ðXnÞ converges in
distribution to Benford’s law and is Benford with probability one.

Proof See (Berger and Hill 2015, Theorem 8.8). h

Example 45 If U is uniformly distributed on [0, 1], then by Example 10 above, U is

not Benford. The sequence of random variables ðU;U2;U3; . . .Þ, on the other hand,
converges in distribution to Benford’s law and is Benford with probability one. In

fact, ðUnÞ converges to Benford’s law at rate ðn#1Þ; see (Berger and Hill 2015,
Fig. 1.6).

As a complement to the last theorem, which shows that powers of every
continuous random variable converge to Benford’s law, the next theorem shows that
products of random samples of every continuous random variable also converge to
Benford’s law.

Theorem 46 If X1;X2; . . . are i.i.d. continuous random variables, then the sequence
ðX1;X1X2; X1X2X3; . . .Þ converges in distribution to Benford’s law and is Benford
with probability one.

Proof See (Berger and Hill 2015, Theorem 8.19). h

Example 47 If U1;U2; . . . are i.i.d. random variables uniformly distributed on
[0, 1], then the sequence of products U1;U1U2;U1U2U3; . . . converges to Benford’s
law in distribution and is Benford with probability one. In fact, ðU1U2 ! ! !UnÞ
converges to Benford’s law at a rate faster than ð2#nÞ; see (Berger and Hill 2015,
Fig. 8.3).

The next proposition illustrates a curious relationship between the Benford
properties of powers of a single distribution and the products of random samples
from that distribution.

Proposition 48 Let X1;X2; . . . be i.i.d. random variables. If ðX1;X2
1;X

3
1; . . .Þ is

Benford with probability one, then so is ðX1;X1X2;X1X2X3; . . .Þ.

Proof See (Berger and Hill 2015, Corollary 8.21). h

Example 49 Start with any positive number, and multiply repeatedly by either 2 or
3, where the multiplying factor each time is equally likely to be a 2 or a 3, and
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independent of the past. The resulting sequence will be Benford with probability
one.

To see this, let X1;X2; . . . be i.i.d. with PðX1 ¼ 2Þ ¼ PðX1 ¼ 3Þ ¼ 1
2. Since the

sequences ð2nÞ and ð3nÞ are both Benford, the sequence ðXn
1Þ ¼ ðX1;X2

1 ;X
3
1 ; . . .Þ is

Benford with probability one. By Proposition 48 this implies that the sequence
ðX1;X1X2;X1X2X3; . . .Þ is also Benford with probability one, and since Benford
sequences are scale-invariant for every x[ 0, the sequence ðxX1, xX1X2,
xX1X2X3; . . .Þ is Benford with probability one.

Note that if X1;X2; . . . is a random sample from a distribution that is not Benford,
then the classical Glivenko–Cantelli Theorem implies that the empirical distribution
converges to the common distribution of the Xk’s, which is not Benford. On the
other hand, if random samples from different distributions are taken in an
‘‘unbiased’’ way, then the empirical distribution of the combined sample will always
converge to a Benford distribution. The final theorem in this section identifies a
central-limit-like theorem to model this type of convergence to a Benford
distribution. Intuitively, it says that when random samples (or data) from different
distributions are combined, then, if the different distributions are chosen in an
unbiased way, the resulting combined sample will converge to a Benford
distribution.

Definition 50 A random probability measure P is a random variable whose values
are probability measures on R.

Example 51 (1) For a practical realization of a random probability measure P,
simply roll a fair die—if the die comes up 1 or 2, P is uniformly distributed on
[0, 1], and otherwise P is exponential with mean 1. More formally, let X be a

random variable taking values in f1; 2; 3; 4; 5; 6g with probability 1
6 each (e.g., the

results of one toss of a fair die). Let P1 be uniformly distributed on [0, 1], and let P2

be exponentially distributed with mean 1, i.e., P2

#
ð#1; t*

$
¼ 1# e#t for all t( 0.

Define the random probability measure P by P ¼ P1 if X ¼ 1 or 2, and P ¼ P2

otherwise. Then with probability 1
3, the value of P is a probability measure that is

uniformly distributed on [0, 1], and otherwise (i.e., with probability 2
3), it is a

probability measure in R that is exponential with mean 1; see (Berger and Hill
2015, Example 8.33; Hill 1995).

(2) The classical iterative construction of a random cumulative distribution
function by Dubins and Freedman (1967) defines a random probability measure
PDF; see (Berger and Hill 2015, Example 8.34).

Clearly, some random probability measures will not generate Benford behavior.
For example, if P is P1 half the time and P2 half the time, where P1 is uniformly
distributed on [2, 3] and P2 is uniformly distributed on [4, 5], then random samples
from P will not have any entries with first significant digit 1, and hence cannot be
close to Benford.

On the other hand, if a random probability measure is unbiased in a sense now to
be defined, then it will always lead to Benford behavior. The definition of unbiased
below is based on the expected value of P, that is, the single probability measure
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that is the average value of P. Given a random probability measure P and any

t 2 R, the quantity P
#
ð#1; t*

$
is a random variable with values between 0 and 1;

denote its expected (average) value by EPðtÞ. It is easy to check that EPðtÞ defines
(or more precisely, is the cumulative distribution function of) a probability measure
PP on R, the average probability measure of P.

Example 52 Let P be the random probability measure in Example 51(1). Then the
average probability measure PP is the probability distribution of a continuous

random variable X with density function 1
3 þ

2
3 e

#x for 0\x\1 and 2
3 e

#x for x[ 1.

Definition 53 A random probability measure P has scale-unbiased significant
digits if its average probability measure PP has scale-invariant significant digits, and
has base-unbiased significant digits if PP has base-invariant significant digits.

Example 54 The classical Dubins-Freedman construction PDF mentioned in
Example 51(2) above has both scale- and base-unbiased significant digits; see
(Berger and Hill 2015, Example 8.46).

The next theorem is the key result that shows that if random samples are taken
from distributions that are chosen at random in any manner that is unbiased with
respect to scale or base, then the resulting empirical distribution of the combined
sample always converges in distribution to Benford’s law. This may help explain,
for example, why the original dataset that Benford drew from many different
sources (Benford 1938), why numbers selected at random from newspapers, and
why experiments designed to estimate the distribution of leading digits of all
numbers on the World Wide Web, all yield results that are close to the logarithmic
significant-digit law, i.e., Benford’s law.

Theorem 55 Let P be a random probability measure so that PðS 2 f0; 1gÞ ¼ 0
with probability one. Let P1;P2; . . . be a random sample (i.i.d. sequence) of
probability measures from P. Fix a positive integer m, and let X1;X2; . . .;Xm be a
random sample of size m from P1, let Xmþ1, . . .;X2m be a random sample of size
m from P2, and so on. If P has scale- or base-unbiased significant digits, then the
empirical distribution of the combined sample X1;X2; . . .;Xm, Xmþ1; . . . converges to
Benford’s law with probability one, that is,

P limN!1
#f1' n'N : SðXnÞ' tg

N
¼ log t for all t 2 ½1; 10Þ

! "
¼ 1:

Proof See (Berger and Hill 2015, Theorem 8.44), noting that slightly different
assumptions and notations are used there. h

Example 56 Since the classical Dubins-Freedman construction PDF has scale- and
base-unbiased significant digits (and has, with probability one, no atoms), by
Theorem 55 above, combining random samples from random distributions
generated by PDF will guarantee that the empirical distribution of the combined
sample converges to Benford’s law.
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6 Common errors

The purpose of this section is to familiarize the reader with several recurring errors
in the literature on Benford’s law, in order that they may be avoided in future
research and applications.

Error 1. To be Benford, a random variable or dataset needs to cover at least
several orders of magnitude.

As seen in Example 10(2), if U is uniformly distributed on [0, 1], then X ¼ 10U

is exactly Benford, yet X takes only values between 1 and 10.

Error 2. Exponential sequences ðanÞ ¼ ða; a2; a3; . . .Þ can generally be assumed to
be Benford.

As seen in Example 15, some exponentially increasing sequences such as ð2nÞ are
Benford, and some such as ð10n=2Þ are not, so care is needed. Even sequences ðanÞ
where a is a rational power of 10, although never Benford exactly, may be very
close to being Benford depending on a, as can be seen by looking at the sequence

ð10n=100Þ, since ðh n
100iÞ is clearly close to being uniformly distributed on [0, 1].

On the other hand most exponential sequences are Benford in the sense that if the
base number x is selected at random via any continuous distribution, then the
sequence ðxnÞ is Benford with certainty (see Theorem 44), i.e., with probability one.

In contrast to this exponential case, no sequence ðnaÞ ¼ ða; 2a; 3a; 4a; . . .Þ is
Benford. Similarly, sequences of sums of i.i.d. random variables with finite variance
are never Benford, as shown in (Berger and Hill 2015, Theorem 8.30). The authors
conjecture that the restriction to distributions with finite variance is not necessary,
and that ‘‘perhaps even no random walk on the real line at all has Benford paths (in
distribution or with probability one)’’ (Berger and Hill 2015, p. 200).

Error 3. If a distribution or dataset has large spread and is regular, then it is close
to Benford.

Unfortunately, this error continues to be widely propagated, likely because it may
be traced back to the classical probability text of Feller; see Berger and Hill (2011).
As the next example shows, this conclusion does not even hold for the ubiquitous
and fundamental normal distribution.

Example 57 If X ¼ Nð7; 1Þ then PðD1ðXÞ ¼ 1Þ' 0:00136, so X is not close to being
Benford. Here X is ‘‘regular’’ or ‘‘smooth’’ by almost any criterion, and has standard
deviation 1,whichmayormaynot fit the criteria of havinga ‘‘large spread’’.On the other
hand, Y ¼ 100X is also regular and has much larger standard deviation than X, but
clearly PðD1ðXÞ ¼ 1Þ ¼ PðD1ðYÞ ¼ 1Þ, so Y is also far from being Benford.

Similarly, no uniform distribution is close to being Benford no matter how spread
out it is, and in this case a universal discrepancy between uniform and Benford can
be quantified.

Example 58 No uniform random variable is close to Benford’s law. In particular, by
(Berger and Twelves 2018, Theorem 5.1), if X is a uniform random variable, i.e., X
is uniformly distributed on [a, b] for some a\b, then for some 1\t\10,
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jPðSðXÞ' tÞ # log tj( 0:0758. . . ;

if X( 0 or X' 0 with probability one then the (sharp) numerical bound on the right
is even larger, namely 0:134. . ..

Similar bounds away from Benford’s law exist for normal and exponential
distributions, for example, but for these distributions the corresponding sharp
bounds are unknown (Berger and Hill 2015, p. 40).

Error 4. There are relatively simple intuitive arguments to explain Benford’s law
in general.

For some settings, such as exponentially increasing sequences of constants, fairly
simple arguments can be given to show when a sequence is Benford, as was seen in
Theorem 14. On the other hand, there is currently no simple intuitive argument to
explain the appearance of Benford’s law in the wide array of contexts in which it
has been observed, including statistics, number theory, dynamical systems, and real-
world data. More concretely, there is no theory at all, let alone a simple one, even to
decide whether the sequence ð1; 2; 5; 26; 677; . . .Þ starting with 1 and proceeding by
squaring the last number and adding 1, is Benford or not; see Example 38(1). The
interested reader is referred to Berger and Hill (2011) for a more detailed treatise on
the difficulty of finding an easy explanation of Benford’s law.
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